
STARTUP TIPS FROM A TECH CEO | 6 WAYS TO IMPROVE AGILE PROJECTS 

VOLUME 7 • ISSUE 1 • JAN 2010 • $8.95 • www.stpcollaborative.com 

13 of the World’s Top Women
Testers Share Unique Insights
Into the Profession page 12







1122 COVER STORY

Women of Influence
A diverse group of the world’s top women soft-
ware testers — 13 in all — share career highlights
and insights into the profession and the industry,
past, present and future.
By Karen Johnson

2200 Agile Projects: 6 Ways to
Avoid the ‘Mini-Waterfall’ 
Don’t let one iteration cascade into the next. Follow
these suggestions to streamline your testing.
By Lisa Crispin and Janet Gregory

2244 Stop Defect Leaks!
You don’t want customers catching bugs you let slip
into production. We tell you how to lower your defect
leakage rate.
By Catherine Powell

2277 Voices of Women Testers 
Six industry pros share their unique perspectives on
how to survive, and thrive, in today’s challenging
industry.

VOLUME 7 • ISSUE 1 • JANUARY 2010
contents

DEPARTMENTS

6 Guest Editorial
Fiona Charles on 
the evolution of
STP’s “women
testers” issue and
why this topic is 
critical to the industry  

8 ST&Pedia
Tips for testing 
Web 2.0 apps 
By Matt Heusser & 
Chris McMahon

10 CEO Views
dynaTrace’s John
Van Siclen discusses
what it takes to lead
a growth-oriented
high-tech startup

4 • Software Test & Performance

ON THE COVER

1. Elisabeth Hendrickson
2. Dawn Haynes
3. Fiona Charles  
4. Renu Rajani 
5. Dorothy Graham 
6. Isabel Evans  
7. Parimala Shankaraiah
8. Rosie Sherry
9. Lisa Crispin

10. Janet Gregory
11. Karen N. Johnson
12. Mieke Gevers 
13. Sharon Robson



www.stpcollaborative.com • 5

A                  PublicationREDWOOD
Collaborative Media

GET MORE ONLINE AT

Software Test & Performance Magazine (ISSN- #1548-3460) is published month-
ly except combined issues in July/August and November/December by Redwood
Collaborative Media, 105 Maxess Avenue, Suite 207, Melville, NY, 11747.
Periodicals postage paid at Huntington, NY and additional mailing offices. The
price of a one year subscription is US $69 for postal addresses within North
America; $119 elsewhere. Software Test & Performance Magazine is a regis-
tered trademark of Redwood Collaborative Media. All contents copyrighted 2009
Redwood Collaborative Media. All rights reserved. POSTMASTER: Send changes
of address to Software Test & Performance Magazine, 105 Maxess Road, Suite
207, Melville, NY 11747. To contact Software Test & Performance Magazine sub-
scriber services, please send an e-mail to membership-services@stpcollabo-
rative.com or call 631-393-6051 ext. 200.

Check out the extended version
of Publisher Andrew Muns’
interview with dynaTrace CEO
John Van Siclen at
stpcollaborative.com/vansiclen

How does testing Web 2.0
apps differ from testing earlier
Web apps? Get in the conver-
sation on Matt Heusser’s blog,
Testing at the Edge of Chaos, at
blogs.stpcollaborative.com/matt/

CONTRIBUTORS

In keeping with the theme of
this issue, we’d like to hear
about women who have influ-
enced your career or the pro-
fession overall. Join us online at
stpcollaborative.com/womentesters

Download “Requirements-Based
Testing: Encourage Collaboration
Through Traceability” 
(sponsored by MKS) at
stpcollaborative.wufoo.com/forms/
requirementsbased-testing/

KAREN N. JOHNSON
(http://www.karennjohnson.com) is
an independent software test con-
sultant based in Chicago. She is an
international keynote speaker.

CATHERINE POWELL
(blog.abakas.com) writes about
what she knows: teams, test-
ing, and the everyday adven-
tures of shipping software.

NANCY KELLN (nancy.kelln@
shaw.ca) is an independent
consultant with 12 years of
diverse experience within the
IT industry. 

ROSIE SHERRY  (rosie@
schux.com) is a U.K.-based
software tester turned social
media professional and founder
of the Software Testing Club.

FIONA CHARLES 
(www.quality-intelligence.com)
teaches organizations to match
their software testing to their
business risks and opportunities.

LANETTE CREAMER (lanette.
creamer@gmail.com) is quality
lead for Adobe Systems, where
she coordinates cross-product
testing for the Creative Suites.

ELISABETH HENDRICKSON
(http://www.qualitytree.com/)
is founder and president of
Quality Tree Software, a con-
sulting and training company. 

SHARON ROBSON
(SharonR@softed.com) is a
trainer and consultant special-
izing in software testing for
Software Education.

LISA CRISPIN (www.lisa
crispin.com) is co-author of
“Agile Testing: A Practical Guide
for Testers and Agile Teams”
(Addison-Wesley, 2009).

JANET GREGORY (www.janet
gregory.ca) is co-author of
“Agile Testing: A Practical Guide
for Testers and Agile Teams”
(Addison-Wesley, 2009). 

Research, source, demo and
share your thoughts on the lat-
est testing tools, technologies
and services at
stpcollaborative.com/resources

STP’s Test & QA Report offers
commentary and insights on the
latest topics in testing. See our
most recent issue at
stpcollaborative.com/knowledge/
519-motivating-test-teams



WELCOME TO THIS SPECIAL ISSUE OF
STP Magazine, devoted largely to the theme:
“Women of Influence in Software Testing.” It
was conceived at the CAST 2009 conference
in Colorado Springs. The July
STP was just out, generating a
happy conference buzz with
its cover caricatures of 10
software testing stars and the
accompanying feature article.

STP publisher Andy Muns
spent that Monday afternoon
in Jerry Weinberg’s tutorial. At
some point the magazine got
passed around. Tester Nancy
Kelln said, “How come they’re
all men?” As Andy told me
later, he turned beet red, and
had no immediate answer. 

Into the expectant silence, Jerry said qui-
etly, “Well, now you’ve done a feature on the
men stars in testing, you’ll have to do one on
the women. It’s only fair.”

So, here we are — thanks to Nancy,
Jerry and Andy, who reflects, “Even though
we didn't have any conscious bias toward
men, those were the strongest relationships
with the magazine run by a male publisher and
editor at the time. We wanted to change that." 

Since mid-October, when Andy engaged
me as guest editor for this issue, I’ve pon-
dered Nancy’s question: Why were there no
women? And I have questions of my own. 

• Why did it take a woman to ask that
question?

• Why didn’t any of the featured men
suggest women for the list? 

• Did any of those men notice there
were no women among them? Did it
matter to them?

• Do men think women in testing aren’t
good enough? Not innovative enough? 

I don’t know the answers. Do you?
There are many smart, articulate women

doing interesting and innovative things in soft-
ware testing. Women lead major testing efforts
and organizations. Women publish testing
books, articles and papers; teach public testing
classes; blog and tweet about testing; and
facilitate and post on testing forums. Women
initiate, organize and participate in social media

and peer conferences. Women speak and con-
duct excellent workshops and tutorials at all
the big testing conferences in North America,
Asia, Europe and Australia/New Zealand. 

Are women testers invisi-
ble? (Or not noisy enough?) I
don’t think so. But in case you
haven’t yet noticed our work,
this STP issue brings you arti-
cles by a tiny selection of the
many women who are doing
and leading great testing. 

You will find here a mix of
established authors and new
voices of women who blog but
whose work has not previous-
ly appeared in print. I looked
for a diverse range of authors

representing different generations, testing
philosophies and ideas, and geographies. We
applied the same diversity principle in select-
ing women to interview for Karen Johnson’s
“Women of Influence” cover story (see page
12), so you’ll find some overlap.

Powerful common themes emerge from
the interviews and articles. These women
testers speak from extensive experience in
software projects in the field. They share a
profound concern for people — for the cus-
tomers they test for, and the colleagues they
collaborate with, teach, manage and mentor.
At the same time, they exhibit a balance
between intellectual and analytical approach-
es to testing, creativity and pragmatism.
Above all, these women are testers by
choice. Their zest in the sheer joy of testing
shines off these pages.

I had a lot of fun putting this special issue
together. You may not agree with everything
you read here — in fact, I hope you won’t! But
you will be interested in, and engaged by,
what these women testers have to say. Let
us know what you think.

Don’t miss the other excellent content in
this issue, too, including Andy Muns’ inter-
view with dynaTrace CEO John Van Siclen.

This issue is dedicated to Jerry Wein-
berg, cherished friend, mentor and critic to
innumerable software people — women and
men alike — who was undergoing major sur-
gery as I wrote this editorial. ý

6 • Software Test & Performance

GUEST EDITORIAL

And Now, The Women!
c

Fiona Charles

VOLUME 7 • ISSUE 1 • JANUARY 2010

Founder & CEO 
Andrew Muns

Chairman & President 
Peggy Libbey

105 Maxess Road, Suite 207
Melville, NY 11747
+1-631-393-6051
+1-631-393-6057 fax
www.stpcollaborative.com

Cover Art by The Design Diva, NY

REDWOOD
Collaborative Media

Editor 
Amy Lipton
alipton@stpcollaborative.com

Contributing Editors
Joel Shore
Matt Heusser
Chris McMahon

Copy Editor 
Michele Pepe
mpepe@stpcollaborative.com

Art Director
LuAnn T. Palazzo
lpalazzo@stpcollaborative.com

Publisher 
Andrew Muns
amuns@redwoodcollaborative.com

Media Sales
Joe Altieri
jaltieri@redwoodcollaborative.com

Chief Operating Officer
Peggy Libbey
plibbey@redwoodcollaborative.com

Chief Marketing Officer
Jennifer McClure
jmcclure@redwodcollaborative.com

Marketing Coordinator
Teresa Cantwell
tcantwell@redwodcollaborative.com

Training & Professional Development
Abbie Caracostas
acaracostas@redwoodcollaborative.com

IT Director
Janette Rovansek
jrovansek@redwoodcollaborative.com

Reprints
Lisa Abelson
abelson@stpcollaborative.com
516-379-7097 

Membership/Customer Service
membership-services
@stpcollaborative.com

Circulation & List Services
Lisa Fiske
lfiske@stpcollaborative.com





FIFTEEN YEARS AGO, OUR INTER-
actions with data on the Web weren’t so
different from our interactions with data
on paper—publishing companies were
beginning to post newspapers and maga-
zines online, but video sites like YouTube
and social media sites like
Facebook and Twitter
were barely a glimmer on
the horizon. Now, though,
our online interactions are 
way more sophisticated.
Unlike the original, Web
1.0 model in which some
“authority” — a media
firm or retailer, for instance
— provided information
directly to users, Web 2.0
applications are created
by and for users, who
readily share content with each other.

So testing Web 2.0 systems, where
the most critical functions involve interac-
tions among users, provides some intrigu-
ing challenges. Such interactions are diffi-
cult to predict, especially when the num-
ber of users is large (think Facebook, with
its whopping 65 million users). The value
of those interactions is also tough to pre-
dict. For example, Twitter was designed
for users to let their “followers” know
what they’re doing at any given moment.
And while it does that, it also lets users
create completely unexpected value.

What’s more, Web 2.0 systems tend
to include rich programming APIs that
enable “mashups,” user-created systems
that integrate a particular Web 2.0 appli-
cation into some larger system. For exam-
ple, tagging a Twitter message a particular
way can cause that message to show up
on your Facebook page.

Based on our testing of numerous
Web 2.0 applications, we offer the follow-
ing suggestions for your Web 2.0 testing:

1. Transform your company into a
staging area. In today’s “enterprise 2.0”
companies, communication among
employees is essential.  So before releas-
ing new software features to your cus-
tomers, try them in your own work envi-

ronment. Not only does
this help expose errors
before the product ships,
but it helps uncover issues
with usability and value.

2. Log and monitor,
monitor and log. The
success of any Web 2.0
app depends on your
understanding of what
users do with the product
— so you can give them
more, better ways to do it

— and where they might be frustrated by
performance or usability problems — so
you can make adjustments and keep
users happy. To that end, have each user
operation write itself to disk, including
what was done and how long it took.
Then, parse the logs to determine which
operations are performed most and least
often and how long each one takes. 

3. Focus on what users focus on. In the
old, Web 1.0 model, we needed to know
how many hits each page received. With
Web 2.0, we need more sophisticated
models of user activity: Is the number of
connections going up or down? Are the
users creating small networks or big ones,
or no networks at all? Are new features
being adopted quickly or are they being
ignored? Are users abandoning older fea-
tures we should remove? By focusing
testing on those features, you get cus-
tomers to tell you what’s important. This is
a key distinction for Web 2.0 apps. 

4. Play back the log as a performance
test. This isn’t a new tactic, but it’s notori-
ously difficult to do well. The good news:
New software architectures could make
this sort of performance testing more fea-
sible. In particular, if your application

exposes a rich API that mirrors most or all
of your business functions, it may be
worthwhile to build clients that exercise
the application according to the data in
historical production logs.

5. Test in production. Wait, let us
explain! If you group your code into ver-
sioned components, or modules, you can
connect specific users to specific ver-
sions after login. For example,
Amazon.com could have a list of power
users, employees, and friends and family
who run the latest, greatest/test/code, in
production, after they log in. 

Microsoft tests during production by
rerouting such users — essentially, early
adopters — to a special cluster after login;
this cluster runs the latest production
code. Thanks to server virtualization and
cloud computing, this strategy is becom-
ing increasingly viable, if still risky. (For

details see How We Test Software at
Microsoft by Alan Page, Ken Johnston
and BJ Rollison; Microsoft Press, 2009.)

6. Test with multiples users on one
server and use special characters. If
you’re testing a Web server-based
application by yourself, everything may
work fine, but things often change when
multiple users hit a piece of software at
the same time. Work with another

8 • Software Test & Performance JANUARY 2010

10 Tips to Test Web 2.0 Apps
c

st& pedia

Matt Heusser and Chris McMahon are career
software developers, testers and bloggers. Matt
also works at Socialtext, where he performs
testing and quality assurance for the compa-
ny’s Web-based collaboration software.

The encyclopedia for software testing professionals

“Before releasing new 

features to customers,

try them in your own

work environment. ”

Matt Heusser and
Chris McMahon



tester to simulate operations that might
“step” on each other. You’re probably
already testing with !@#$%^ and other
special characters as inputs, but the
Windows utility charmap lets you insert
UTF-8 characters. Use these characters
as your username and anywhere values
are entered. If the program supports
internationalization, using foreign letters
as a username is another quick way to
test i18n.

Another technique, cour-
tesy of Indianapolis tester David
Christiansen (http://www.tech
darkside.com/), is to paste
<script>alert(“danger”)</script>
and save everywhere input can
be saved and redisplayed. If you
see a “danger” popup on the
next view, or you see the alert
without the script tags, you’ve
found a cross-site scripting vul-
nerability.

7. Automate tests to segment
functionality. When a test drives the
GUI, it’s tempting to have that test do
everything a human would do at setup
and teardown, but the result, over and
again, is an agonizingly slow test suite
that’s tough to maintain. Instead, test
only the functions involved in using the
particular feature you’re testing, and

make judicious use of export, import,
SQL loads, copies of logs, command-
line interfaces, batch jobs and so on.
You’ll end up with a much faster test
suite that covers only basic functions.
The only downside: You’ll need other
techniques to test the other functions. 

8. Integrate your test suite into the
application. At Socialtext, we built a wiki

as an editable Web page. Our automated
tests are expressed in a language called
wikitext, which is generally human-read-
able. A wikitest to drive Google in a
search for Matt’s blog “Testing at the
Edge of Chaos,” for instance, might look
like the test in Table 1.

We write these tests as wiki pages,
and our test framework pulls the code
from the wiki and executes it. This

approach provides two major benefits:
We can use our own application to cre-
ate the tests, and nontechnical readers
can access and understand the results
from any Web browser. It’s like living on
staging (also known as eating our own
dog food — or, as we like to think of it,
drinking our own champagne.

9. Test on a production-data clone. It’s
tempting to run basic tests (cre-
ating users, accounts and vari-
ous combinations) on a clean
system, when a “dirty” system
would provide more realistic
results. We’ve been doing data-
base testing for years on clones
of production data, and we’ve
discovered it makes sense to do
the same on Web 2.0 apps. 

10. Be ready to roll back.
Build in hotswappable engi-

neering capability so you can “roll
back” new software to a previous
good-state version in the event of a fail-
ure during production. If performance
suddenly falls through the floor, a sys-
tem administrator flips a switch and the
software returns to a known good
state. Sure, this is a reactive tech-
nique, but sometimes, better late than
never! ý

st& pedia

TABLE 1: WIKITEST

open_ok www.google.com

wait_for_element_present_ok search 30000

wait_for_element_present_ok submit 30000

type_ok search Matt Heusser

click_ok submit

wait_for_element_present_ok link=The Edge of Chaos 30000

Advertiser URL Page 

STP Collaborative www.stpcollaborative.com 2- 3

STP Magazine www.stpcollaborative.com/contribute 7

STP Collaborative www.stpcollaborative.com 26

STP Collaborative www.stpcollaborative.com/events 39

Hewlett-Packard www.hp.com/go/alm 40

IInnddeexx ttoo AAddvveerrttiisseerrss

JANUARY 2010 www.stpcollaborative.com • 9



AS CAPTAIN OF PRINCETON'S
varsity hockey team in the late Seventies,
John Van Siclen won the coveted
Blackwell Trophy for sportsmanship. Thirty
years later, he co-launched the
New England Clean Energy
Council. From sports to family to
his newfound interest in greening
the environment, the four-time
CEO has always put passion into
every endeavor. But nowhere
does his exuberance shine more
than in his role as chief executive
of dynaTrace Software, the
Lexington, Mass.-based, applica-
tion performance management
company. 

Based on his experience
leading tech startups, including Adesso,
SupportSoft and Interwoven, Van Siclen
shares insights into carving out a career
path, developing management and team-
building skills, and positioning products
for fast growth in competitive markets.

ANDREW MUNS: How does a
history major at Princeton end up in
the IT space?  Did you have any idea
when you were a student that this
would be your career path?

JOHN VAN SICLEN: Not at all.
When I graduated, I was more interested
in location than career. I was born and
raised in California, so I ended up in the
Bay Area. Through some Princeton con-
nections, I ended up at a company called
Qume Corporation, which was being
acquired by ITT — at the time ITT was the
greatest American business success
story to date. That gave me a taste of
technology as well as the high-growth
startup environment right out of college,
and it always stuck with me.

Those were the early days of the
technology business, back in the late
Seventies and early Eighties, when the
sector branched from IBM into a number
of companies and we went from the
mini-computer business into a high-vol-
ume growth business segment. 

So you caught the bug working at
Qume and ended up working at a lot of

other early-growth tech companies.
What are some of the unique chal-
lenges associated with leading an
organization in that phase of maturity?

One of the trick-
iest is to match the
product with your
go-to market. If the
product is very diffi-
cult to implement,
like SAP, you have 
to go after a very
high-end integration
channel, whereas, if

something is really
meant for a high-
volume market, it
better be extrem-
ely clean and
easy to use, and
it better work as
advertised. 

A lot of companies get that match
wrong. They try to put the wrong kind of
product through the wrong kind of chan-
nel and go-to market, and it tanks. My
background has been in different chan-
nels to market and different business
strategies to maximize the effectiveness
and growth of a business by matching
those two.

What are some examples where
a company had what should have
been a great product and a great idea
that died because of that mismatch?

Take the Siebel/Salesforce.com
battle. The way people wanted to buy
sales automation tools was as a lighter-
touch SaaS delivery model, but it wasn’t
available at the time Siebel was domi-
nant. The minute Salesforce.com made it
available, it swept through and overtook
the heavy-lifting product that took a year
to ramp up and get a value out of, which
was the old-style Siebel approach.
Adoption of the new lighter-touch, faster
time to value of a Salesforce.com was so

rapid because the product matched the
go-to market.

What life experiences outside the
business realm helped build your
leadership skills?

Probably two things. I happened to
play a highly competitive sport that was
also highly team-oriented, and also very
unnatural for where I was playing it — I
grew up in Los Angeles and played ice
hockey. There are a  few things that have
always stuck with me from this. I don’t
mind doing something that’s a little bit out
of the ordinary. I’m highly competitive
about it, and team-building is to me one of

the key success attrib-
utes of any company.

The second thing is
that by the time I was 30
I had spent as many
years on the east coast
as the west coast, so I
have a blended personali-
ty—west coasters think
I’m a highly intense east-
erner and east coasters

think I’m a collaborative westerner. The
combination of the two gives me a dif-
ferent perspective from many. 

What do you think are the key
attributes for a great leader?

I’ve had the benefit of working for
some just tremendous ones and also
working and seeing plenty of things to
avoid. It comes down to a handful of
things. One is to maintain the highest
integrity. It sort of goes without saying,
but there are many leaders who don’t
have it, and those are the ones we don’t
respect as much.

Another is having a clear vision and
being able to communicate it. I know
some great vision people, but they can’t
communicate it. Other people are great
communicators but don’t have vision.
So that combination is very important,
especially in early-stage companies
where tight focus is fundamental to your
success, as is how you measure and
manage it to the goals you set.

Last, you have to have leadership

10 • Software Test & Performance JANUARY 2010

Don’t Stop at Innovation

CEO VIEWS

RESUMÉ

JOB: CEO, dynaTrace SoftwareEDU: BA, Princeton University EXTRA CREDIT: Captain, Princeton Varsity Hockey Team; Founding Fellow, New England CleanEnergy Council

John Van Siclen

By Andrew Muns

c



qualities. Those can sometimes come out
over time. You can’t shy away from tough
decisions or from being out in front of the
company and leading the way, in the field
or inside your walls. You just have to have
some of those characteristics. 

What are the most important
things to focus on as CEO of a soft-
ware company in managing that
development process? 

One is focus—and again, this is espe-
cially important in the early stage so you
don’t try to do too much too soon. Like
anything, it’s not the fancy plays that cre-
ate a great team, it’s the execution of fun-
damentals. You really need to know what
your fundamentals are and execute on
those well before you start to fan out. I
have seen many companies try to get too
wide too fast, and that’s a recipe for disas-
ter. Usually young companies that are
most effective bite off something they can
chew, do it really well and then add to it
over time. 

Second is to get the product out early
to customers so you get feedback and
react to it quickly. The first version of a
product is not about trying to win the mar-
ket, it’s really for you to learn.

As you grow, expectations go up.
And with that comes more regimen in test-
ing the product, validating with customers,
communication and the rest. So there’s a
maturity curve that all products go through
and a process for that.

Third is to make sure you have a
product team that can execute. And it’s
not just about innovation. New companies
do need to innovate, but if they can’t pro-
ductize, the innovation is lost. I’ve worked
with companies that had great ideas and
great innovation, but focused too much on
“R” and not enough on “D.”

It really comes down to getting the
right mix on your team between innovators
and productizers.

How, as CEO, do you create a
team-building atmosphere that fos-
ters effective collaboration and 
communication?

It’s not easy and it’s not always well
done. The two key folks are the CTO, who
is usually a founder in our kind of business
and the person who has the brainstorm or
the idea; it’s another person, usually the
vice president of engineering, who is the
one to productize.

The chemistry and communication
between those two team members is fun-
damental to success. You find a lot of bro-
ken technology companies as a result of a
breakdown there. 

It’s an executive manager’s responsi-
bility to manage that dynamic early. Once
the team is in place, if they’re talented and
you trust them, the dynamic will be posi-
tive. Hiring the right team makes your job
is a lot easier.

I’m not the best at determining tech-
nical talent. I can determine business tal-
ent, and I’m pretty good everywhere out-
side of R&D. R&D is a unique skill set
where you really have to be able to drill
down into not only what people know but
how well they apply it.

Over the years I’ve
been blessed with some
great CTOs and some
great VPs of engineering.
I’ve also had my share of
CTO challenges, so I’ve
seen it from both sides
and know how precious
that chemistry is.

Software testers
often debate how to
advocate to senior
management for more
resources. How do you
measure the value of
the testing phase of the
development lifecycle
and allocate resources
among development
and testing?

The way I look at it
is, an unhappy customer or a problem that
manifests itself in the field is at least a
hundred times more expensive to fix than
if I found it and solved it back in develop-
ment in the first place. And I do not think
I’m unique in this view — I think most sen-
ior executives and CEOs know this. In
fact, it’s not even a question. The problem
comes sometimes in the battle for
resources between the production guys
who are firefighting and the preproduction
folks who aren’t firefighting, especially if
they’re not very efficient or they’re not
providing full coverage. There needs to be
a conversation internally about prior prop-
er planning to prevent poor performance.
And the preproduction side is really about
prior proper planning.

To me, in building a software compa-
ny, it’s fundamental. To an operational
company that is a distributor of technolo-
gy products, or a retailer of XYZ, or a
logistics company, it’s not necessarily nat-
ural to think like software executives who
know their business is all about their soft-
ware. They’re the ones who often look at
the preproduction side and say, “There’s a
bunch of developers, I’ll pay for them, but
I don’t want to pay for a lot of systems to
make them efficient,”  or, “I’m going to
put all my money in my production opera-
tions area because that’s where the heavy
lifting and big applications need to live.” I
think a lot of the dilemma that’s out there
for your readers is how to raise the aware-

ness of management that
prior proper planning
actually does pay off. 

Again, when I talk to
software companies —
SaaS companies and the
rest — they get it. It’s
when you talk to global
10,000 companies, they
can struggle a little bit
with it. What I've found to
be most effective is just
asking them the simple
questions: What does an
hour of downtime cost,
how important are these
applications to your busi-
ness? How important is
your reputation to you?
How many users are
affected by a glitch and
how many of your cus-

tomers are affected? 
That usually spins the attention

around to questions like, what do I need
to make sure I test better, increase cover-
age and avoid shoving things to produc-
tion to hit a date. In fact, one of the say-
ings we have at dynaTrace is, if you want
to go fast, go slow up front — basically
make sure you’re really ready to run. ý

JANUARY 2010 www.stpcollaborative.com • 11

“It’s not the fancy

plays that create a

great team, it’s

the execution of

fundamentals. ”

FOR MORE with John Van Siclen, go to 
wwwwww..ssttppccoollllaabboorraattiivvee..ccoomm//vvaannssiicclleenn.

In keeping with the theme of this issue, STP is
interested in interviewing women CEOs of test-

ing companies. If you know an excep-
tional woman CEO you’d like us to talk
to, please contact Andrew Muns at
amuns @redwoodcollaborative.com.



A Diverse Group of the World’s 

Top Women Software Testers — 13

in All — Share Career Highlights 

And Insights Into the Profession,

Past, Present and Future



repeat it. And what influences some
people doesn’t necessarily influence
others. We're all exposed to a steady
stream of perspectives from those in our
professional lives — from co-workers
and managers in our own organizations
to peers and consultants we meet at
conferences, workshops and training
sessions. We absorb even more from
industry publications, Web sites, blogs
and local meetup groups. 

But what sticks? What ideas and
behaviors resonate with us, and which
ones impact the way we do our jobs,
pursue our careers, run our lives? 

In the following pages, we speak
with 13 women who've influenced the
profession of software testing in various
ways, both tangible and intangible.

The software testing community is
large, and indeed, there are women
testers the world over — so our list is
diverse. It's not based on any formal
process, nominations or rankings, and
it's not limited to those whose names
and faces are well known in the industry.
It simply represents women guest editor
Fiona Charles and I feel have contributed
to the profession in some significant way.

We recognize that the list is short —
too short; we had to limit it as a function
of time and space. And, at the staff edi-
tors' insistence, it includes interviews with
Fiona Charles and me. The following con-
versations appear in alphabetical order. 

FIONA CHARLES
Company:  Quality Intelligence
Position: Owner and Principal Consultant
Location: Toronto, ON
Web Site: www.quality-intelligence.com 
Fiona Charles edited "The Gift of Time"
(Dorset House, 2008). She is the guest
editor for this issue of STP. (See her edi-
torial, page 6.)

Fiona, tell us about your career and
accomplishments in software testing.

I find it difficult to measure accom-
plishment — and especially influence —
over 30-plus years. I can say what’s on

the resume. I’ve done project work in a
tremendous range of software develop-
ment environments: human, technical
and business. With each new project,
I’ve built my toolkit of models, heuristics,
questions, patterns, techniques and
strategies. I’ve been a technical writer
and a director of QA, as well as a tester

and test manager. I’ve managed projects
and founded and run a testing practice.
I’ve worked for two software product
companies and two consulting firms, and
now have my own company. I’ve
observed, learned, adapted, made mis-
takes and solved problems. 

I know I’ve played an important part
in the success of many difficult projects.
My work apparently influences people,
but that’s often hard to see at the time.
Years later, I’ll hear “Fiona taught me to
write,” “to see the big picture” or even
“to speak truth to power.” Those are
humbling words — but ultimately the
human interactions are more profoundly
satisfying than what is on the resume.

What is your personal view of soft-
ware testing?

Our business is people. Testers
work with people and for people. Teams
build software for people. That funda-
mental ethic drives everything I do as a
tester, as a manager and as a consult-
ant. It’s all about people.

I fell in love with software and soft-
ware development in my first IT job. I am
endlessly enchanted by the process of
building from logic an application that
actually has the potential to improve
people’s lives.

Testing is solving problems. How do
we find the software bugs and gaps that
could hurt people the most? Striving to
do that within project constraints is intel-
lectually demanding and creative, both
humanly and technically: from modeling
the strategy to staffing and managing
the team; from constructing test data to
following your instinct that something in
this feature smells wrong and there are
bugs to be found — here!

What fascinates me about software
testing is that the context in which we
solve problems is continually changing.
Each application, environment, business,
project and team is different, and each
demands a fresh approach. I love diving
into a new project, immersing myself in
everything I can absorb, while maintaining
a critical tester’s eye. What am I seeing,
hearing, sensing? What have I missed?
That’s true whether I’m managing a test-
ing project, or consulting with an organi-
zation to raise its testing capability or res-
cue testing that’s missing the mark.

We can’t impose predefined ideas, or

By Karen N. Johnson

Measuring influence is like capturing fog in a jar — virtually impos-
sible. Sometimes influence is simple — a singular life- or career-
altering idea or experience. Other times, influence is elusive —
we can’t pinpoint it on a map or calendar, we can't predict or

Karen N. Johnson (http://www.karennjohnson.com)
is an independent software test consultant based
in Chicago. She is an international keynote speak-
er and has published numerous articles on soft-
ware testing as well as recorded Webcasts.

[Our business is 
people. That 

fundamental ethic 
drives everything 
I do as a tester,
manager and 
consultant.]

— Fiona Charles

JANUARY 2010 www.stpcollaborative.com • 13

P
ho

to
gr

ap
h 

by
 B

la
ck

 J
ac

k 
3
D

FIONA  CHARLES



14 • Software Test & Performance JANUARY 2010

“processes,” on a client. We have to
observe each organization and its unique
opportunities and risks. We have to listen
to its people. I’ve always operated accord-
ing to context and I’ve always been a sys-
tems thinker and a pragmatic problem
solver. When I first heard there was a
“school of context-driven testing,” I was
incredulous. What’s the big deal? Why do
we need a “school”? I couldn’t join it —
any more than I could bring myself to join
a political party. I’m most in sympathy with
the context-driven folks, but I can’t be a
card-carrying anything. That does-
n’t work for me or my approach.
And I don’t believe it would work
for my clients.

LISA CRISPIN
Company:  ePlan Services
Position: Director of Engineering 
Location: Denver, CO
Web Site: www.lisacrispin.com 
Lisa Crispin has co-authored
two books:
• “Testing Extreme

Programming" (with Tip
House; Addison-Wesley,
2002)

• "Agile Testing: A Practical Guide
for Testers and Agile Teams"
(with Janet Gregory; Addison-
Wesley, 2009)

She also contributed a chapter to
"Beautiful Testing: Leading
Professionals Reveal How They
Improve Software" (O'Reilly
Media, 2009). (See the article on
agile projects she co-wrote in this
issue, page 20.)

Lisa, tell us about your career
and accomplishments in software
testing.

Helping the agile and testing com-
munities figure out how testers can con-
tribute to agile teams, and how agile
teams can best accomplish testing,
have been my greatest joy. I promoted
good ideas from other people, such as
example-driven development and the
agile testing matrix from Brian Marick,
story test-driven development (which I
think is originally from Joshua
Kerievsky, at least his article is the first
I read, and lately has been advanced by
people like Elisabeth Hendrickson,
Gojko Adzic and Antony Marcano), and
collaborative test tools such as
FitNesse. I have tried to pay forward all
the help I got early on from the incredi-
bly generous agile community. 

Cowriting “Testing Extreme Pro-

gramming" with Tip House and “Agile
Testing” with Janet Gregory are the con-
tributions of which I’m most proud. We
wrote these books to share experiences
and ideas we think will help other people,
and based on the feedback we’ve gotten,
we achieved our goal. I’m also proud to be
a part of a good company whose top pri-
ority is quality, and feel that my team and I
make major contributions to the success
of the business as a whole.

What is your personal view of soft-
ware testing?

Use the “whole-team approach." I
learned the whole-team approach from
the early XP gurus, including Kent Beck,
Ward Cunningham and Ron Jeffries.
Everyone involved with delivering soft-
ware takes responsibility for all testing
activities needed to ensure the highest
possible quality. Every team member has
equal value. Everyone on a development
team is a developer, including testers —
and all developers do testing. Testing
and coding are part of one process, not
separate phases. 

I’ve also been heavily influenced by
Mary and Tom Poppendieck. Everyone
on the development team (which
includes the testers) learns the busi-
ness. This allows us to help the cus-
tomers make good decisions and con-

tribute our own ideas to help the busi-
ness improve. When I first started on an
XP team, I read an article by Alistair
Cockburn in which he said something
like, "Software projects succeed when
good people are allowed to do their best
work." It's so true.

ISABEL EVANS
Company:  Testing Solutions Group
Position: Principal Consultant
Location: London, England
Web Site: www.testing-solutions.com

Isabel, tell us about your
career and accomplishments in
software testing.

The quality improvement
and preventive work (IT and
across the business) is what I
am most proud of, particularly
in terms of what I did at K3
Group as the company quality
manager from 1987 to 1991,
where we managed to intro-
duce flexible, adaptable, team-
focused processes across the
company, including design-
your-test-first processes for
development and strong cus-
tomer involvement throughout
the lifecycle. These are still the
ways of working that I support. 

I have also taken part in
many software testing projects
over the years as a tester and as
a test manager, and I believe my
work has been valued by project
managers and developers. Now
most of my work is training and
consultancy, with some proj-
ects, but also activities that will
help in retaining and passing on
knowledge to the next genera-

tion [of testers], which is important. That
is why I have tried to contribute to stan-
dards working parties and syllabus work-
ing parties, as well as speaking at con-
ferences. 

It has been a privilege to be recog-
nized by the industry in a number of ways
[and especially] being approached to
write a book of my own. “Achieving
Software Quality Through Teamwork”
[Artech House, 2004] is a distillation of
what I had seen working throughout my
IT career. 

My contribution has been very small
when I compare it with those of others in
the industry, but I have been able to
introduce and use some positive ideas
from outside the IT industry to benefit
people and teams with whom I have

[Passing on knowledge to 
the next generation 

[of testers] is important.]
— Isabel Evans

LISA CRISPIN ISABEL EVANS



worked, so I think it has been useful. 
What is your personal view of soft-

ware testing?
Software and software testing is in

its infancy, so it's important that we
cooperate across the IT industry to
improve. Society as a whole needs bet-
ter — but more invisible — IT systems.
By that I mean,  if IT is working, no one
will notice it. Testing is only one way to
achieve that, and not necessarily the
best way, so we ideally should concen-
trate on improving software quality
management  — software development
and maintenance processes and defect
prevention. Testers need to
cooperate with the rest of the IT
industry to achieve that. 

We also need to concen-
trate on the people who buy and
use the IT systems — customer,
business, society — as the stake-
holders. What qualities do they
require in the IT that supports
their lives? Testing (the activity)
needs to focus on checking the
technology that supports the peo-
ple who are affected by it.

Testers don’t necessarily
need to be specialist-independ-
ent testers. Other people (devel-
opers, analysts, project man-
agers) can do great testing, and
are naturally there early in the
SDLC [software development
lifecycle]. So helping those peo-
ple do the testing can be very
effective. It may be that the future
role for specialist testers in many
organizations is coaching and
mentoring people in other disci-
plines rather than doing testing.

MIEKE GEVERS
Company:  Aqis
Position: Director and Principal
Consultant
Location: Belgium
Web Site: http://www.aqis.eu/ 

Mieke, tell us about your career and
accomplishments in software testing.

Being in the IT testing industry for
more than 20 years, I was able to taste
from a wide range of aspects in testing.
Working with automatic test tool manu-
facturers, like Rational SQA, Segue
Software and Borland, gave me the
opportunity to develop a special interest
in the techniques and processes relating
to performance management and auto-
mated testing, with its different facets,
approaches, issues and solutions.

During the last two years at Segue
Software, I had the chance to con-
tribute to the product roadmap, always
looking toward the “future of testing,”
which always fascinates me. 

One aspect of testing — namely, per-
formance testing — which can be so sim-
ple and yet so complex, is one of my
favorites. The level of complexity we are
dealing with day by day really intrigues me;
out of all my notes collected over the
years of hands-on, a performance testing
methodology emerged. Another aspect
gaining my attention,  and whose growing
importance is visible in the market, is agile

and performance testing. Although the
iterative development process approach
was published by Victor Basili ["Structured
Programming," edited by V. Basili and T.
Baker, IEEE Press] in 1975, it seems to us
to be new and innovative. Nevertheless, it
does bring up some questions for me:
How can we as testers fit into this
process? Which tools should we use?
How can we do better? And many other
questions I would like to see answered. 

I’m trying to contribute where I can;
by being a regular speaker at confer-
ences, joining different committees,
being a Eurostar country coordinator for
Belgium and a Program Committee mem-
ber of Eurostar 2007 and 2009.

Belgium did not have a formal test-
ing community, so in 2006, together with
three friends/testing colleagues, I
cofounded the Belgian Testers
Organization, and have since become a
board member of KVIV and joined the
BNTQB [Belgium and Netherlands
Testing Qualifications Board], part of
ISTQB [International Software Testing
Qualifications Board], responsible for
the Examination Workgroup. At all times
I try to share this knowhow with others,
as a coach, mentor, speaker, trainer or
doing the hands-on and by staying a
technician in heart and soul.

What is your personal view
of software testing?

Tools should be the vehicle to
reach a well-defined goal, like cost
reduction, easier and faster test-
ing, better coverage, etc., but they
never should be the means itself.
Don’t forget, “A fool with a tool
remains a fool.” Also, think of the
application's performance like
response times, from the begin-
ning of the development lifecycle
— yes, even in Agile. Starting per-
formance testing early will give an

advantage to everyone.

DOROTHY GRAHAM
Dorothy has co-authored three
books on software testing: 
• "Foundations of Software

Testing: ISTQB Certification"
(with Erik Van Veenendaal,
Isabel Evans and Rex Black;
International Thomson
Business Press, 2008)

• ”Software Test Automation"
(with Mark Fewster; Addison-
Wesley, 1999)

• "Software Inspection" (with
Tom Gilb; Addison-Wesley,
1994)

Dorothy, tell us about your career
and accomplishments in software testing.

When I first decided to specialize in
software testing, most people thought I
was a bit mad! In the 1980s, a career in
testing was unheard of; there were only a
few books on software testing, one
nonacademic testing conference (in the
U.S.), no qualifications in testing and most
managers didn’t want to discuss testing.

My first job was as a programmer in a
test group for Bell Labs in New Jersey —
this is how I first got into testing. I wrote
testing tools that became some of the ear-
liest “shelfware,” but I did get interested in
testing. In my work as a developer at

JANUARY 2010 www.stpcollaborative.com • 15

[Tools should be the 
vehicle to reach a well-defined

goal, like cost reduction 
and better coverage.]

— Mieke Gevers

DOROTHY GRAHAMMIEKE GEVERS



Ferranti, I put testing “on the map” for the
projects I was involved in (police command
and control systems).

I've been privileged to have been
involved in helping to raise the profile of
testing from a widely perceived “neces-
sary evil” (sometimes not even consid-
ered necessary) to a respectable pro-
fession (or at least a recognized career
choice). I wrote training material in soft-
ware testing for the National Computing
Centre in the U.K., another training com-
pany (now gone) and clients (including
Unisys). 

In 1993 I was program chair
for the first software testing
conference outside the U.S.,
and was delighted to be pro-
gram chair again this year. 

During the 1990s, I also
authored and co-authored four edi-
tions of the “CAST Report," which
described all known commercial
tools that supported testing.

With my former colleagues
at Grove Consultants, I trained
thousands of testers. Grove
continues to use training materi-
al I helped to develop. What I
enjoyed most about training was
seeing people’s minds change. I
have been accused of “making
testing interesting” – but of
course it already is interesting, I
just helped people to see that. 

I am pleased to have worked
on getting tester qualifications
started in the U.K., and spreading
worldwide. Achieving a qualifica-
tion does not mean you are a
great tester, but at least it can
remove the bottom layer of igno-
rance about what testing is for
many people.

What is your personal view of soft-
ware testing?

Testing is great fun and very chal-
lenging, and encourages curiosity, devi-
ousness and destructive tendencies.
Thinking of what to test — that is, test
design — is therefore best done by peo-
ple. If someone thinks testing is boring,
he or she is not thinking of test design,
but of executing tests, often the same
tests over and over again. Test automa-
tion is useful because we can get com-
puters to do these things that are
tedious and error-prone for human
beings to do. It is more important to do
good testing (design good tests) than to
automate whatever tests you have now:
Automated chaos is just faster chaos.

JANET GREGORY
Company: DragonFire
Position: Agile Coach and Process
Consultant
Location: Calgary, AB
Web Site: www.janetgregory.ca
Janet Gregory co-authored “Agile
Testing: A Practical Guide for Testers
and Agile Teams” (Addison-Wesley,
2009) with Lisa Crispin. (See their article
on agile projects in this issue, page 20.)

Janet, tell us about your career and
accomplishments in software testing.

My greatest accomplishment in the

world of software testing is sharing my
experiences on teams transitioning to
agile development methods. There is no
secret one way, there is no one great
achievement; it is the collection of years
of experience. I take these experiences
and form them into something that people
can understand and use in a practical way.

By sharing my experiences, both
good and bad, I try to help testers
understand their role on an agile team.
The book I co-authored with Lisa Crispin
addresses many of my thoughts to a
wide audience, but it is working directly
with testers on an agile team that gives
me the greatest pleasure. 

I like to see when testers understand
the skills they have developed over the
years are useful not only in the traditional

fashion, but also on agile teams. I try to
instill confidence in other people so they
recognize that, as part of an agile team,
their role is to question, challenge assump-
tions and guide development. Being part
of an agile team means growing and learn-
ing new skills, like automation, so they
have time to use their intuition and testing
skills in exploratory testing. 

Many of the testers I talk to tell me
they are still fighting a "throw it over the
wall" attitude in their development teams.
I try to give them a different way of look-
ing at testing so they will keep on testing.

What is your personal view
of software testing?

Testing only software that
already exists is too late in the
game. Moving testing forward to
challenge assumptions and help
guide development takes a lot of
guesswork out of the game.

DAWN HAYNES
Company:  PerfTestPlus
Position:  Senior Trainer and
Consultant
Location:  Palm Bay, FL

Dawn, tell us about your
career and accomplishments in
software testing.

The accomplishments that
mean the most to me are the
ones that involve being a "tester
advocate.” We testers are not
part of one established/consoli-
dated community. There is no
universal foundation of informa-
tion we all learn before getting
our first testing job (or even dur-
ing our first testing job); fre-
quently our managers and execu-
tives don’t understand what we

do, how to manage us or even how to
ask us for the information they really
need, and there is really no place for
everyone to go to get help. That means,
for the most part, every test team is an
island unto itself, and every tester is an
individual who travels from island to
island figuring it all out more or less on
his or her own throughout his or her
career.

I know I can’t change that situation.
I’m not even convinced that testers
could change much of it if we all banded
together in a well-organized, grass-roots
movement to improve things. What I
believe I can do, and try to do every time
I teach a class, speak at a conference,
write an article or just run into testers
“in the wild,” is help testers realize they

16 • Software Test & Performance JANUARY 2010

[I’d like to tell all the 
managers and employers 
of testers to walk a mile 

in our shoes.]
— Dawn Haynes

DAWN HAYNESJANET GREGORY



are not alone, share with them the best
of the tips, tactics and techniques I’ve
acquired as I stumbled through my own
career, and generally try to enable
testers to be just a little more effective
and a little happier when they get back
to the office — one tester at a time. 

What is your personal view of soft-
ware testing?

I’d like to tell all the testers in the
world that they’re not alone. That
most of the challenges they are facing
are really the same challenges most
everyone else is facing. That
what we do really does make a
difference most of the time.
And to remember to not take
business decisions by man-
agers and executives to do the
opposite of what you recom-
mended personally; most of the
time, they really are trying to
make the best decisions they
can for the company as a whole
based on information we’re
unlikely to ever be aware of.

I’d also like to tell all the
managers and employers of
testers in the world who have
never been testers themselves
to walk a mile in our shoes. To
experience, firsthand, the chal-
lenges, complexities, ambiguities
and frustrations we run into
almost every single day. To hon-
estly learn what we can do, not
just what we’ve been assigned to
do, for them. And conversely, to
be open and candid with us about
the logic behind the decisions
they make that clearly appear
nonsensical to us. 

To put it another way, I’d like
to tell everyone directly or indi-
rectly involved with software testing to
do their part to get the whole team in the
same boat working together to get that
boat safely and efficiently to the same
destination. I know it sounds like a little
thing, but I can think of no single thing
that is more valuable to a test team and
the project it serves than having every
single member of the team on board
with the same mission, goals and priori-
ties from kickoff to handoff.

ELISABETH HENDRICKSON
Company:  Quality Tree Software
Position: Owner
Location: Pleasanton, CA
Web Sites: http://www.qualitytree.com/
and http://testobsessed.com

Elisabeth, tell us about some of your
accomplishments in software testing.

The test heuristics cheat sheet is a
PDF download available for free from my
Test Obsessed site, and it's been enor-
mously popular. People from all over the
world have told me they have printed it
out and have it hanging in their work-
space. When I created it I just wanted to
make a little one-sheet reference for
some of the test design heuristics that I
teach in my software testing classes,
but it's turned out to have far greater

lasting value than I ever imagined.
Also, my green Test Obsessed wrist-

bands. I got the idea of getting wristbands
made when my youngest daughter came
home from a summer camp wearing a
wristband emblazoned with the name of
the camp. It's how the camp identified the
kids when they went on field trips. So
when I created the wristbands, I thought
they were a cute way to signal an obses-
sion with testing — I didn't think anyone
would take them too seriously. I was
wrong. I've been absolutely delighted to
discover that, for some, the wristbands
are much more than an 8-inch circle of
green plastic; they symbolize a deep com-
mitment to testing.

My other contributions are less tan-

gible. I've had a hand in organizing sev-
eral small peer-driven workshops,
including the Agile Alliance Functional
Testing Tools workshops, and I'm
delighted at how such events foster a
spirit of community and collaboration. I
also spend much of my time teaching
and speaking.

What is your personal view of soft-
ware testing?

Professional testers are in an excel-
lent position to provide a tremendous
amount of value to any software project

by providing insight into vul-
nerabilities and risks. But test-
ing that does not provide
value to the business is
waste. All that time spent
hunting down a bug that no
one cares about and no one
will fix? Waste. Time and
money spent on test automa-
tion that adds no value to the
project? Waste. Holding a
project hostage until it passes
an arbitrary quality bar that
has nothing to do with the
actual business goals of the
project? Not just waste, but
actively damaging to the busi-
ness. To ensure that we actu-
ally provide all the value we
can, we must seek feedback
from the business on an ongo-
ing basis to make sure the
testing effort is in line with the
business goals.

(See Elisabeth Hendrick-
son's article "The Politics of
Testing: Making Conflict Count,"
on page 30.)

KAREN N. JOHNSON
Company: Software Test

Management
Position: Owner
Location: Chicago, IL
Web Site: www.karennjohnson.com 
Karen N. Johnson contributed a chap-
ter to the book "Beautiful Testing:
Leading Professionals Reveal How
They Improve Software" (O'Reilly
Media, 2009). She was interviewed
for this article by STP guest editor
Fiona Charles.

Karen, tell us about your career and
accomplishments in software testing.

At this point in my career, I feel my
writing about software testing is my pri-
mary contribution to the field. My blog is
frequently focused on how I feel about
my work, my thoughts and reactions to

JANUARY 2010 www.stpcollaborative.com • 17

[Testing 

that does 

not provide

value to 

the business 

is waste.]
— Elisabeth Hendrickson

ELISABETH HENDRICKSON

KAREN N. JOHNSON



testing even more so than on testing
itself or tactics and techniques. My arti-
cles are frequently filled with stories
based on my work. 

When I wrote the chapter in "Bea-
utiful Testing," it just poured out. My
chapter is a story and the story is
extremely personal. Software testing is
not just a profession for me – it’s
personal and it is much of my life.
Not surprising, my writing
sounds that way.

My career at this point has a
mix of activities, a variety I had
longed for. I build classes and
teach, write articles, speak at
conferences and continue to
have hands-on time testing on
projects. I frequently tell people, I
feel I have one of the best jobs. I
love the work I have in front of
me — especially the mix. Ad-
mittedly, independent consulting
has its share of stresses and
uncertainties, but for someone
who likes change and variety, it
can be quite interesting. 

I’ve not been alone by any
stretch. I’ve met and learned
from so many people in our field
over the years. I am a perpetual
student, still learning, reading
most nights. Cem Kaner and
James Bach are two people who
have strongly influenced my
learning. Rob Sabourin and Mike
Kelly are two people I spend as
much time with as I can. I could
mention other people, but there
is a word count I have to keep in mind! I
think my colleagues would agree the
biggest thank you I could give would be
to contribute back to our field, to give
back to the community.

What is your personal view of soft-
ware testing?

I envision the community of software
testing as a large table and around that
table there are seats filled with many dif-
ferent people. Each person brings a
unique background, ideas and, of course,
opinions. We’re together in the sense
that we all have a seat in our profession,
we all bring something to the table. We
are united by our profession, even
though, like a family seated at a dinner
table, we disagree — sometimes strong-
ly — but then we’re people, after all! 

I see the community spreading
across not just America or North America
but around the world. A very large table
filled with different philosophies, ap-

proaches, and experiences and of course,
different cultures and backgrounds too. I
like and appreciate diversity even when I
don’t agree with the other person or when
I can’t seem to apply other people’s tech-
niques to my own work. When I attend
software testing conferences, I value the
opportunity to meet other testers, even

when our philosophies don’t align, to hear
first-hand what people’s beliefs and expe-
riences are. We are united at least on
some level by the craft of software testing.

RENU RAJANI 
Company:  IBM India
Position: Delivery Executive
Location: Bangalore, India

Renu, tell me about your career and
accomplishments in software testing.

I co-authored [with Pradeep Oak] the
book "Software Testing: Effective
Methods, Tools and Techniques" pub-
lished [in 2004] by McGraw-Hill. This was
one of the first books on software testing
in the Indian IT industry; today it is used in
a number of engineering colleges and
referred by many software practitioners.
This work got me recognition as a
“Testing Thought Leader in Indian
Industry” at the Test 2008 Conference,
organized by PureTesting, India.

I have built one of the largest and
strongest test competencies for IBM in
India, providing test services for a large
base of IBM customers across geogra-
phies. I've been successful in creating test
factory services and providing centralized
test services for business units of a large
financial institution. The concept of “facto-

ry” or “utility,” while well under-
stood and practiced for manufac-
turing (automotive, etc.) and serv-
ice utilities (gas, water, electricity),
is [only] now real in software test
services.

What is your personal view
of software testing?

Testing is a focused disci-
pline, to be taken as a dedicated
career, with all the passion it
deserves. Those who see it as a
“necessary evil” — as an activ-
ity or a stop-gap job — would
not do justice to it.

Coverage of risks is key to
successful testing. Test coverage
is a key metric for test activity.
How to provide best coverage
with optimal test effort is both sci-
ence and art. Understanding of
domain and application knowl-
edge can’t be underestimated.
Clients today recognize that a
vendor can provide value in test-
ing only with creation and reten-
tion of domain knowledge and
insist on domain knowledge as a
key capability for "core" teams in
a core/flex model. 

Testing is a risk-manage-
ment activity. Testing can be endless if
not smartly done. How deeply one tests
depends on risks to be addressed and
impact of those risks if uncovered in
real life.

Testing is not a stand-alone activity to
be done at the end of the software devel-
opment lifecycle. The testing lifecycle
needs to be aligned to suit newly emerging
software engineering lifecycles — itera-
tive, rapid application development, etc.
Testing steps cover the entire software
lifecycle and each step in the software life-
cycle should include validation.

SHARON ROBSON
Company:  Software Education
Position: Knowledge Engineer
Location: Brisbane, Australia
Web Site: www.softed.com

Sharon, tell us about your career and
accomplishments in software testing.

My biggest accomplishments range

18 • Software Test & Performance JANUARY 2010

[How to 

provide best

coverage with

optimal test

effort is 

both science

and art.]
— Sharon Robson

RENU RAJANI

SHARON ROBSON



from the individual level through to the cor-
porate and then global level. At the individ-
ual level, when I am working with a team or
training a group of new testers, I love see-
ing the spark of knowledge grow in their
eyes. I count that as a key accomplish-
ment, as it means I have opened the world
of testing up to others. I know then that the
knowledge and techniques of testing have
found another new home, and that these
people will commit to better quality in all
they do. 

At the corporate level. I built a team
of testers from a dispersed group who
went on to have a common language,
common techniques and excel-
lent practices, which in turn con-
vinced the rest of a somewhat
cynical development team of the
value of testing in the SDLC. The
team knowledge building and
team integration approach result-
ed in my inclusion as test manag-
er for a very large piece of nation-
al government work, from the
very beginning of the project,
able to be involved and con-
tribute to the structure of the
entire project, helping focus the
project team on the value of qual-
ity and the inclusion of testing at
each step to drive toward cus-
tomer satisfaction at all stages of
development. 

Another thing I'm proud of is
my activity at the certification level
in testing. I am a founding board
member of the Australia New
Zealand Testing Board (ANZTB)
and the chair of the Marketing
Working Group for the ISTQB,
which means I am actively involved
in the knowledge growth about
testing and raising the profile of
testing practices at a global level.

What is your personal view of soft-
ware testing?

Testing is what it’s all about.
Ultimately, we have to prove that the
system being built meets the customer’s
needs. Testing does that.

Testing is all about figuring out
“what we're trying to find” and “how
we'll know when we've found it.” Based
on these two thoughts, we can structure
our testing to suit the needs of any
piece of work.

“Software testing shows the value
of the system that has been built — for
the team it is empowering, it is validating,
it is the rationale for the work that has
been done and what is yet to come; for

the customer it is the icing on the cake.” 
(See Sharon Robson's article "The

Power of Pessimism" on page 32.)

PARIMALA SHANKARAIAH
Company:  Consona CRM India 
Position: Senior QA Engineer
Location: Bangalore, India
Web Site: http://curioustester.blogspot.
com/

Parimala, tell us about your soft-
ware career and about "weekend test-
ing" in India.

I am one of the initiators of the
Weekend Testers community in

Bangalore, which was started with an
objective of practicing testing on week-
ends. I have facilitated many weekend
testing sessions where testers from differ-
ent parts of India have participated in test-
ing open source systems to improve test-
ing, communication, note taking and facili-
tation skills. As part of Weekend Testers, I
have helped provide a challenging setup
for testers to practice exploratory testing
and help the testing community. 

What is your personal view of soft-
ware testing?

Software testing is an amazing craft
based on exploration, discovery, investi-
gation and learning. I feel proud to be
practicing this craft. 

(For a more in-depth conversation

with Parimala Shankaraiah about women
software testers in India, see page 37.) 

ROSIE SHERRY
Company: Software Testing Club 
Position: Founder, Community Manager
Location: Brighton, England
Web Site: http://www.softwaretesting
club.com

Rosie, tell us about your software
testing career and, in particular, the
Software Testing Club.

Several years ago I started a blog
on software testing. I was keen to get to
know people in the field. Build my confi-

dence up. I then thought it
would be a great idea to start an
online community for software
testers — the Software Testing
Club [STC].

I didn't think it would take
off, but it did. It's been going
for two and a half years now
and constantly growing, not
only in number of members but
in quality of discussions. On
the back of it, we are trying out
some new ideas, too. 

When I say "we," I mean
myself and other members who

have been core in getting the
STC to where it is. It's not about
me. It's about the testing com-
munity. It's about adding some
“va-va-voom” to our industry,
which is often excessively over-
shadowed by politics and corpo-
rate bureaucracy.

I wouldn't feel so proud
without the STC. The positive
feedback is lovely. And I know
and hope that as a result of it
other testers have benefited in
unique ways.

What is your personal view of soft-
ware testing?

If someone were to say software
testing is boring, I'd say think again. You
only need to meet a few passionate
testers to find out that testing has a
bright future.

Perhaps testing is now at a tipping
point. There are testers out there who
can make a difference. We just need to
convince the rest of the world. ý

JANUARY 2010 www.stpcollaborative.com • 19

[If someone were to 
say software testing

is boring, I’d say  
think again.]

— Rosie Sherry

We want to hear about women soft-
ware testers who have influenced
your career or the profession as a
whole. Join our online forum (it's
not for women only) at wwwwww..ssttpp
ccoollllaabboorraattiivvee..ccoomm//wwoommeenntteesstteerrss.

ROSIE SHERRYPARIMALA SHANKARAIAH



design phase, coding phase and testing phase, and testing may
lag an entire iteration or longer behind the coding. Even if the
team practices Test Driven Development (TDD) and does some
Acceptance Test Driven Development (ATDD), the stories still
drag out to the end of the iteration. Time to test the finished
code is nonexistent, new features are unreleasable and testing
activities (especially any GUI test automation) are pushed to the
next iteration. Testing falls further behind, features must be
reworked, there’s no safety net of automated regression tests,
and the team delivers less and less value over time.

Several techniques, discussed below, can be used to alle-
viate this problem of turning agile iterations into a microsized
phased and gated process. Although each of these approach-
es individually will help you avoid the mini-waterfall, the real
power is in having the entire team adopt them all: 

1. Focus on one story at a time
2. Keep stories small
3. Collaborate
4. Reduce feedback cycles
5. Automate
6. Use the “whole team” approach

FOCUS ON ONE STORY AT A TIME
No user story is done until it’s tested, so how do we get all the
testing done before the end of the iteration to be sure our code
is releasable? We have to spread the testing out over the entire
iteration, and the best way to do that is to focus on finishing
one story at a time. 

Clearly, there’s a limit to how many people can work effi-
ciently on the same story simultaneously. Still, by focusing on
finishing the highest-priority story, including its testing activi-

ties, and then the next highest-priority story and so on — and
if we size our stories appropriately — we can have our first
story fully ready for testing a few days into the iteration, with
the next story to follow shortly.

Here’s an example of how this works for a two-week iter-
ation. Let’s say our team consists of four programmers and
two testers, and we’ve planned four stories. We’ll call them
A, B, C and D. They’re arranged in priority order (correspon-
ding, conveniently, to alphabetical order) on the storyboard,
one story per row. The team, working with the customers, has
written high-level acceptance tests for each story during iter-
ation planning. 

Day 1: Two programmers pick up tasks for Story A, and
two start on Story B. The team is focused on finishing Story A,
so both testers pair to review the high-level tests for Stories A
and B and expand the test cases to share with the programmers
to get feedback and guide them in their coding tasks.

Day 2: The testers automate the tests and get as far as
they can with test tasks until some code is ready. They’ve had
some conversations with programmers and customers about
the stories, and refined the tests. Story A is well under way, but
there’s a UI task that still needs to be done. One of the devel-
opers on Story B picks up the Story A UI task so story can be
finished. The testers expand on Story B tests to share with the
programmers before they get too far in their coding.

Day 3: The testers start on Story B tasks in the morning,
but by noon the happy-path acceptance test for Story A is
passing. The testers switch back to Story A, writing more
detailed automated tests and doing their manual exploratory
testing. They also review the high-level tests for Story C so the
programmers can start on it.

By Lisa Crispin and Janet Gregory

M
any new agile software development teams
experience a common problem — the “mini-
waterfall.” They do two-week iterations, but
each iteration includes a requirements phase,

Lisa Crispin (www.lisacrispin.com) and Janet Gregory (www.janet
gregory.ca) are the authors of “Agile Testing: A Practical Guide for
Testers and Agile Teams” (Addison-Wesley, 2009). Crispin has worked
as a tester on agile teams for 10 years. Gregory is an agile coach, help-
ing business users and testers understand their roles in agile projects.

P
ho

to
 b

y 
Jo

se
 M

an
ue

l 
G

el
pi

20 • Software Test & Performance JANUARY 2010



JANUARY 2010 www.stpcollaborative.com • 21

Day 4:
The team feels confi-
dent it has covered Story A with both
automated and exploratory manual
tests. The testers switch focus to Story
B, and two developers start working on
Story C.

Rinse and repeat: This rhythm
of focus, finish, focus, finish continues
until all stories are complete. The team
stops all new development on Day 9, to
allow Day 10 wrapup of testing and end-
game activities and avoid last-minute
scrambling. The last day or two of the
iteration is sometimes devoted to final
regression testing, extra-functional test-
ing, such as load or security, and release
tasks (see Figure 1).

Not everyone can work on one
story, but when tasks remain to finish a
story, everyone pitches in to complete
them. If the end of the iteration
approaches and there are lots of testing
cards for unfinished stories, the pro-
grammers pick those up to get the sto-
ries finished in priority order.

By concentrating on finishing the
top-priority story in progress, you ensure
that at least some stories will be com-

pletely “done” by the
end of the iteration, instead of

having four stories that might have cod-
ing but not testing completed, or four
stories that are 80 percent done and not
ready for delivery.

KEEP STORIES SMALL
Big stories usually translate into longer
delays for some testing activities. If it
takes a week to finish any stories in the
iteration, the team is sure to run out of
time to complete all testing tasks. In addi-
tion, teams are more likely to underesti-
mate the work involved in bigger stories.

Try this: Size stories as small or
medium, where medium is no longer than
three calendar days of programmer effort
to code and unit-test, with one or more
team members working on the story. If
the story is bigger than that, ask the cus-
tomer to slice it up into smaller pieces. 

This isn’t easy, especially if you’re
new to user stories. It’s hard for cus-
tomers to see any business value in a
small story. Nevertheless, small stories
have many advantages. You’re less like-
ly to have a story “blow up” on you if it’s
relatively small. Working on stories that

take a day or two — three at most —
helps the team get into a nice rhythm.
Work — writing tests, writing code, test-
ing some more — flows through the
team continually. The team is more likely
to finish stories at a steady pace

throughout the iteration, without lots of
testing tasks left over at the end.

If your stories are too big or com-
plex, use a “thin slice” or “steel
thread” technique to split them up.
Start with an end-to-end path
through the story, a thin slice that
represents a minimum of core
functionality. This keeps the team
from getting stuck on, say, the first
page of a four-step UI wizard, and
ensures that the essential function-
ality of the story — including testing
— is finished. We can enhance

testability and remove integration
issues as quickly as possible.  

Say, for example, we have the
following story: “As a customer on

the Donkeys and Dragons Web site, I
want to click on an account name in a list
of my payment account names and add,
edit and delete the account informa-
tion.” We could slice this up as follows:

Slice 1: Display the page that lists
the payment accounts. The name is a
link. Clicking on the link takes the user
to a second page, which displays exist-
ing accounts from the database. There’s
no add, edit or delete capability yet, but
the page has navigation back to the first
page or elsewhere in the application.

Slice 2: The second page includes
the ability to edit, and has data validation
for the different fields, but changes don’t
persist to the database.

Slice 3: Changes on the second
page persist to the database when the
save button is clicked. In addition, the sec-
ond page has reset and cancel buttons. 

Slice 4: The user can add a new
account; with all the validation, the new
account is persisted to the database and
redisplayed on the list.

Slice 5: The user can delete an
existing account if it isn’t used in an
active order.

For each thin slice, the team writes
and automates test cases, writes the
code and does exploratory testing, build-
ing on it for each subsequent slice.
Testing activities are spread out, so
testers don’t have to wait until all the code
is finished. Even if the last slice isn’t com-
plete, the story may be releasable. If the
delete functionality weren’t finished, for
example, the business could opt to handle



22 • Software Test & Performance JANUARY 2010

deletes offline until the delete functionality
could be put into production.

COLLABORATE
Collaboration among customers, pro-
grammers and testers is essential to fin-
ishing stories in a timely manner. The col-
laboration starts when the team defines
the acceptance tests. When there’s
input and discussion by the whole team,
the tests are richer and the understand-
ing of the story intent increases. This
interaction translates directly into build-
ing the right thing. 

When testers share their tests with
programmers, several things happen. First,
it provides an opportunity to get input to
the test design and test cases from the
programmers, which makes the tests more
robust. Second, it eliminates misunder-
standings about the behavior or misbehav-
ior of the functionality. This can save
rework time later. Testers will find fewer
unit-level defects, because the expecta-
tions have been set. Third, the tests can
guide the programmer’s coding, especially
if they’re automated. And last but not least,
knowledge is shared — programmers learn
more about testing, and testers learn more
about risky areas of the code.

During the iteration, when the team

works together to find and fix defects
immediately, there’s less time spent
sending bugs back and forth through the
defect tracking system. Less time is
wasted trying to determine if something
is a bug rather than a new feature, and
more time is spent developing good soft-
ware to meet customer expectations. 

REDUCE FEEDBACK CYCLES
Agile development is all about iterative

feedback loops. The less time spent
getting feedback to those who need it,
the less waste in the cycle. Earlier we
mentioned fixing defects as soon as
they’re identified. This can happen only
if the testers can test as soon as a story
is coded. 

Let’s revisit our earlier iteration
example. Once Story A is ready for test-
ing on Day 3, we recommend that the
tester sits with the programmer before
the code is even checked in to get a
quick demo. If together they find any
issues, the programmer can fix them
before declaring the story ready for test-
ing. That’s a short feedback cycle. 

Continuous integration is another
example of a short feedback loop (see
more about this in the section on
automation, below). Unit tests run as
soon as code is checked in, so pro-
grammers know within a few minutes if a
check-in caused a regression failure. Of
course, each programmer can and
should run the unit tests before check-
ing in, but individual environments may
not replicate all aspects of the regres-
sion test environment. 

When the rest of the automation
regression tests are run, they provide
more feedback to the team. The shorter

the cycle between runs, the faster any
issues are found and can be fixed. The
automation also frees time for testers to
do exploratory testing.

Teams should use their iteration ret-
rospectives to make small, incremental
changes to their process. If testing is
squeezed to the end, for instance, deter-
mine what might solve that problem. One
rule might be to have the first story ready
to test by Day 4 of the iteration. Another

might be that no new features can be
introduced the last day of the iteration.
These adjustments will make the overall
changes gradual and sustainable.

AUTOMATE
A key purpose of our tests is to guide
the programmers to write code that
ensures the product does what the cus-
tomer needs it to do. An essential side
effect of both TDD and ATDD is to pro-
duce automated regression tests that
tell the team if a new code check-in
breaks any existing functionality. Several
aspects of automation — continuous
integration, the automation test pyramid
and automated regression tests — are
critical to helping testers keep up with
programmers during an iteration. 

Continuous integration (CI), a build
process that integrates all the code,
compiles it, runs tests to verify there are
no regression failures and deploys the
latest code to testing sandboxes, is a
mandatory component of any team’s
infrastructure. You can’t get along with-
out CI any more than you can opt out of
using source code control. Without con-
tinuous integration and the quick feed-
back it provides, testing is sure to
become a bottleneck. 

For most teams, CI isn’t hard to set
up. There are many solid CI tools, both
open source and commercial, and most
development teams have the expertise
to set up the build process. There are
even tools such as TestifyWizard that
speed up creating projects, tests and
builds. (See sidebar on next page for
links to CI tools). 

Automated test pyramid: Cost is a
critical aspect of return on investment

FIG. 1: TESTING TIMELINE

ThoughtWorks CI Feature Matrix:
http://confluence.public.thought
works.org/display/CC/CI+Feature
+Matrix

TestifyWizard project startup 
wizard: 
http://code.google.com/p/
testifywizard/

Agile Alliance Functional Test Tools
feature matrix: 
http://bit.ly/AgileTestTools

Austin Workshop on Test Auto-
mation 2009 Automation Tools List:
http://awta.wikispaces.com
/2009ToolsList

LINKS TO CI TOOLS



(ROI). Generally, lower-level tests such
as unit tests cost less than longer, more
complex tests to write and maintain, and
the team can keep up with testing more
easily if it automates as much testing as
possible at the unit level. The next best
choice from a cost perspective is testing
under the GUI, at the object or presen-
tation layer. 

Today’s GUI tools enable us to
design relatively robust tests that aren’t a
maintenance burden, but GUI tests still
run much more slowly than tests that
don’t have to navigate the UI. Experiment
to find the minimum GUI test automation
that will protect the software.  

Regression tests should be a good
thing — they’re intended to ensure our
testing “keeps up” with development,
so testing doesn’t devolve into a sepa-
rate phase that lags behind coding. Yet
we hear complaints: “We spend too
much time maintaining our automated
tests.” “Our tests failed, but it’s hard to
figure out why.” 

Automated regression tests require
the same care and feeding as produc-
tion code. We must design our automat-
ed tests so that when they fail, the
cause is obvious, because we need to
be able to change automated tests rela-
tively easily if the application changes —
especially the UI, in the case of GUI
tests. We also need to consider the
tests’ maintainability, because we need
to identify issues and update the tests
as part of our iteration tasks. 

The purpose of automated regres-
sion tests is to provide quick feedback as
to whether any new code check-ins
broke existing functionality. To ensure
speed, we must automate wisely, using
risk analysis to determine what to include
in our regression test suites. The right
regression tests will identify bugs before
they reach production, saving a lot of
money and increasing ROI.

USE THE ‘WHOLE TEAM’
APPROACH
The team needs a shared vision of what
“done” means for each story. All team
members must realize they’re responsi-
ble for quality, and that anyone can take
on a testing task if necessary. 

Quality in the product starts with
the first discussion of a new feature,
getting the assumptions out in the open
and defining acceptance tests. We can’t
test quality into the code, but the team
can “bake quality in” with good coding
practices, such as TDD and ATDD.

Using the “whole team” approach, the
team collaborates, focuses on finishing
one story or slice at a time, and marks
each piece “done.” 

The team commitment to quality
starts in planning meetings. Say, for
example, there’s a story for a batch
process to parse, validate and upload
employee census files. Tina Tester asks,
“Can we write FitNesse
tests for this story?”
Programmer Paul replies,
“Yes, let’s slice up the
story. The first slice is
parsing, and we can write
FitNesse tests for that.
The second slice is validat-
ing, we can write FitNesse
tests for that too.” Tina
wonders, “How will the
batch job report errors and
warnings from the valida-
tion?” The team and the
customer discuss different
ways of logging and
reporting errors. Paul sug-
gests a way to handle
error reporting that would
let them easily write a fix-
ture to verify the error log
files. They write and priori-
tize task cards accordingly.

Because the whole
team takes responsibility for making sure
all test activities are completed for each
story before the end of the iteration, the
entire team also participates in choosing
test tools, making sure test environments
are ready and the latest code can be
deployed to them, finding ways to design
testable code and planning time for essen-
tial testing tasks, such as exploratory test-
ing. If a regression test fails — whether at
the unit, functional or GUI level — the
whole team is responsible for immediate
attention to making it “green” again. 

Perhaps there’s testing the team
can’t do, because it doesn’t have
access to the right test environments or
the necessary skill set. Some organiza-
tions may plan to do load and perform-
ance testing later in the release cycle
rather than during each iteration. Some
companies may require a security audit.
No matter who ends up doing the actual
testing or how it gets done, the whole
team makes sure all these activities are
planned and executed.

A daily standup meeting helps us
remember we’re working as one team to
accomplish common goals. If we look at
the storyboard on Day 6 of a 10-day

sprint, for instance, and find several sto-
ries with many testing task cards in the
“to-do” column, we know we have a
problem. The team may decide to stop
working on the lowest-priority story in
progress and have a programmer pick
up some testing tasks on the highest-
priority unfinished story. 

When the team puts good feedback
tools, such as continuous
integration, in place, it can
ensure there’s always a
stable build to test each
day, and a production-
ready deliverable at the
end of the iteration. The
worst-case scenario is
that perhaps the lowest-
priority story wasn’t com-
pleted, or a “nice-to-have”
slice of a story must be
carried over to the next
iteration. Customer expec-
tations are met, there are
no leftover testing tasks to
be squeezed into the next
iteration and the team has-
n’t built up a queue of
unfixed defects. The
whole team is ready to
start new stories, with no
waste or rework.

NO PHASES, NO GATES!
Releasing business value frequently,
while maintaining a high quality level,
works best when we make sure quality
is built in and testing isn’t squeezed to
the very end of an iteration. Don’t let
your agile team slip into a mini-waterfall,
with short iterations divided into specifi-
cation, design, coding and testing phas-
es, or testing lagging an iteration behind
coding. It’s not sustainable over the
long term, the team will start cutting
corners to “save time,” code won’t be
protected with automated tests and
there will never be enough time for
exploratory testing. 

If you want the benefits of agile
development, and the ability to release a
solid product at least once a quarter, get
your team working together. Prioritize
those stories, slice them up small, and
focus on finishing them one at a time.
Your team will develop a rhythm of test-
ing, coding, testing some more.
Automate your regression tests and
ensure quick feedback so the team
stays on track. Collaborate with cus-
tomers and each other to keep discov-
ering ways to do your best work. ý

JANUARY 2010 www.stpcollaborative.com • 23

[Teams should 

use their 

iteration 

retrospectives 

to make small,

incremental

changes to

their process.]



never discovered by anyone — they lurk
forever, wreaking no havoc. And then
there are the bugs of which you remain
blissfully unaware — until a customer
alerts you to them. 

This is the tale of that last category of
bugs. This is the story of defect leakage.

DEFECT WHAT?
Defect leakage measures how many
defects in the software were missed
during testing but found after the prod-
uct shipped. 

You’ve probably seen the classic
“costs of defect resolution” graph,
which illustrates that the later it gets, the
more expensive it is to fix a bug. Let’s
say your widgets have to register with
your frobbles before the frobbles start
running. Catch it in requirements? No big

deal; just add it. Catch it in design? Not
too bad; just update the REST API and
workflow designs to make sure you don’t
have frobbles running amok or widgets
that don’t register. Catch it in develop-
ment? A bit of refactoring, probably.
Catch it in test? Shoot, now you have to
grab a developer who’s already moved
on to the next project, and probably let
the release date slip a bit. Catch it in the
field? Oooh, at this point you have to find
a way to patch all your customers, adjust
your billing so as not to charge them for
the frobbles that didn’t have registered
widgets, and then patch everybody else.
You may have to push the next release,
too, because this defect fix is bound to
derail development for a while. 

The point: Defects are expensive in
terms of money, time and reputation, so

any bug a customer finds hurts
you. That’s why you want to get
your number of defect leaks as low as
possible (zero would be good!).

HOW TO MEASURE DEFECT
LEAKAGE
For a defect to be counted as “leaked,”
it has to meet only two criteria:

1. The engineers and testers have
to have missed it

2. A customer has to have found it
down the line.

Seriously, it’s that simple.
As with many measurements, a

number alone doesn’t really mean much.
Let’s say your number of leaked defects
in a given release is 500. If you’re, say,
MassiveCo shipping a major OS, that’s
probably not too bad. But if you have
one customer and the product is two

Bugs come with many different stories. Some you find and fix so they
never see the light of day. Others you decide are not significant
enough to merit fixing — if a customer happens to find them after
product release, you can address them then. Still other defects are

Catherine Powell (blog.abakas.com) writes
about what she knows: teams, testing, 
and the everyday adventures of shipping
software.

STOP
Defect
Leaks!

24 • Software Test & Performance JANUARY 2010

By Catherine Powell

Don’t Let Customers Catch Bugs You Miss



Ill
us

tr
at

io
n 

by
 T

he
 D

es
ig

n
D

vi
a

JANUARY 2010 www.stpcollaborative.com • 25

text fields and a single output, 500
leaked defects is terrible. There has to
be a  comparator to provide perspective
on the number of leaked defects. That
comparator is the total number of bugs
found in a given release by everyone
involved — the testers, developers and
customers.

The defect leakage rate is simply
the number of bugs leaked divided by

the total number of bugs. For example, if
you found 100 bugs in a release, and in
the field you found 10 leaked bugs, your
leakage rate would be 10 percent.

A bonus of sorts for high-function-
ing organizations is the ability to track
defect leakage separately for each bug
priority level. You wind up with a table
like that in the example in Table 1.
Comparing your defect leakage rates

across priority can help you determine
which test changes to make first. 

WHAT’S A REASONABLE DEFECT
LEAKAGE RATE?
Zero is ideal, but 1 percent to 5 percent
leakage is a more realistic goal in most
cases. To determine an achievable rate,
determine your current rate, then reduce
that rate slightly with every release. At



some point, reducing that rate will
become more expensive than simply
dealing with the leaked defects — that’s
when you stop. (This is the way most
efforts work, from testing to perform-
ance improvements. Keep going until it’s
more expensive than stopping and deal-
ing with the consequences.) How much
you try to reduce your defect leakage
rate depends on where you start and
your other priorities.

It’s not easy to
reduce defect leakage,
but once you measure it,
you’re well on your way.
There are only a few
things you need to know
about each leaked defect:

• Affected cus-
tomer(s)

• Type of defect
• Version in which it

occurred
You don’t want to dive

too deeply into details;
you’re trying to see a pat-
tern. Specifically, you’re
looking for: (1) releases in
which you leaked a lot of
defects, (2) patterns of
components or test types
in which you’re missing
defects, or (3) customer
environments in which
defects consistently occur.
This will help identify the areas in which
you need to improve — not just in testing,
but possibly in development practices,
deployment guidelines or even the way
you set requirements.

Pick a specific area and take a clos-
er look. What’s causing a particular cus-
tomer’s problems? Is it an interaction with
something in the customer’s environment?
Some use case you haven’t even thought
about? A particular part of your product?
Once you identify the source of the prob-
lem, you can determine how to improve it.
Multiteam solutions are likely — this isn’t
something any one individual or group can
go off and do alone. Defect leakage often
points to a systemic problem. Remember,
if there were a simple fix, you’d already be
doing it!

Consider these examples:
The Problem Customer: Sometimes

you find that a disproportionate number
of your leaked defects come from one
customer, or one kind of customer.
Keep in mind these are real defects —
it’s not that the customer is complaining
about nothing. Evaluate the issues and
figure out what these customers have in
common. Maybe it’s an interaction with
a third-party product. Time to get that

third-party product in
house and start using it.
Still missing defects?
Work more closely with
the clients to figure out
what you’re doing differ-
ently — it’s a good bet
they want to help make
sure these problems are
solved, pronto.

The Too-Big-for-Our-
Britches Customer: Some
problems are caused by
clients attempting to use
systems at higher volumes
than intended. Even if a
certain usage level is not
ideal (who’d put a million
files in a single folder?), it’s
still causing problems. So
you need to design for and
test that specific use case.
Check your designs and
make sure your UI has pag-

ination or other metaphors to handle
large amounts of data. Make sure your
architecture can handle the growth. And
follow through by testing with large
amounts of data — don’t make any
assumptions.

The Sensitive Component: When
you study the issues closely, you may
discover a component that just isn’t
working in the field. Most of your prob-
lems are this thing’s fault. Fortunately,
this is a relatively straightforward engi-
neering problem. Consider a rewrite if
things are truly bad. If they’re not so
drastic, refactor, add code reviews, and
institute more formal component men-
torship and oversight. Get it stable; your
customers will thank you.

[You don’t 

want to dive 

too deeply into

details; you’re 

trying to see 

a pattern.]

TABLE 1: SETTING PRIORITIES BASED ON DEFECT LEAKAGE RATES

Priority

P5

P4

P3

Total Defects

75

36

163

Leaked Defects

2

1

5

Rate 

2.7%

2.8%

3.1%

26 • Software Test & Performance JANUARY 2010



6 Industry Pros Share Their Unique 
Perspectives on How to Survive — and Thrive —

In Today’s Challenging Industry

Voices of
Women
Testers

28 9 Tips to Encourage 
Collaborative Testing 
by Lanette Creamer

30 The Politics of Testing:
Making Conflict Count 
by Elisabeth Hendrickson

32 The Power of Pessimism: 
Applying Murphy’s Laws 
To Software Testing  
by Sharon Robson

33 Putting Intuition to the Test:
Trust Your Instincts
by Nancy Kelln

35 Use the Social Web to Build 
Your Personal Brand 
by Rosie Sherry

37 India’s Women Testers 
Gain Visibility
A conversation with Consona’s 
Parimala Shankaraiah

JANUARY 2010 www.stpcollaborative.com • 27



28 • Software Test & Performance JANUARY 2010

workflows. In addition to providing addi-
tional opportunities to uncover bugs, it
provides a chance to share product
knowledge and testing techniques. 

Given these advantages, why isn’t
more collaborative testing
being done? Because
most testers don’t fully
understand the value of
collaboration, and most
companies don’t know
how to entice them to par-
ticipate. Only by spelling
out the benefits for
testers and clarifying the
value you place on their
time and talent can you
draw them in. Here are
nine ways to make it hap-
pen, with real-world exam-
ples based largely on my
experience at Adobe.  

1. ENLIST
‘VOLUNTEERS’ 
Like most quality engi-
neers, Adobe’s QEs
sometimes struggle to
identify testing gaps
between teams. But when
a bug impacting a key cus-
tomer was identified
between products several
years ago, Adobe’s QE
managers teamed up to
investigate the situation
and discovered they could
address other, broader testing gaps by
working together on certain projects.
After resolving the initial dilemma, they
began identifying larger gaps and cham-
pioning the concept of collaborative

events, encouraging both executives
and testers to support the idea. 

Collaborative projects do take
testers’ time and focus off their regular,
single-product testing, so when you

request participants for your collabora-
tive events, limit their involvement (we
keep it to one or two days maximum per
tester), and get managers’ approval
before letting anyone sign on.

All that said, the combination of
enthusiastic participants with the appro-
priate skill set, dedicated hard work and
fast sharing of data generally proves to
be a plus for everyone involved, includ-
ing the company as a whole. Through
collaborative test events at Adobe, for
example, we’ve found bugs that have
been fixed before every Creative Suite
product demo to date, and we’ve identi-
fied an incompatibility with Flash Player

versions that would have
impacted most Creative
Suite users. 

The return in savings
far exceeds the invest-
ment, due to the severity
and scope of the bugs
found that wouldn’t be
identified without collab-
orative testing. It’s virtu-
ally impossible to quanti-
fy cost or return on
investment because we
find these bugs before
shipping, but to put it in
perspective, note that
the cost of reshipping
even the smallest of the
Creative Suites in just
one language on one
platform is many millions
of dollars, so if we find
even one bug and pre-
vent the reshipment of
one Suite, we save
potentially millions of dol-
lars per release.

2. CREATE
CELEBRITIES
Don’t dream of saving
the day, create the day

when one tester whispers in the ear of
another, “Did you hear what happened
last night during the Bug Bash? Chris
brought the server down again!” Testing
with others makes the best bugs the

9 Tips to Encourage
Collaborative Testing

C
ollaboration among software testers effectively brings another per-
spective to early software evaluation and helps create an environment
ideal for testing multi-user scenarios, permissions, security, custom
configurations, integration, and cross-platform and cross-product

By Lanette Creamer

P
ho

to
gr

ap
h 

by
 B

lu
e-

Fo
x



stuff of legend, and the testers who
uncover them become stars. The search
for software defects becomes a delight,
and the spread of success stories
points the test team naturally toward the
bugs’ nests.

3. STIMULATE COMPETITION
Who’s buying the drinks? Make a deal: If
no new bugs are found as a result of the
fix that went in, the QE team buys
rounds for the development
team. If the QE team can find a
bug severe enough to force a fix,
drinks are on the developers!

Before we shipped Adobe
Creative Suite 2, we’d taken
some bug fixes for the installer.
Everyone got involved, all the
way up to the director of testing
and down to the newest intern. 

But think about it: As a
tester, do you really want your
manager, who hasn’t been in the
trenches for years, to find more
bugs than you do? How about the
developer who wrote the feature?
Sure, the developer might be
great at reviewing his or her own
code, but you want to shine when
time is ticking down to the final seconds. 

The competition can get intense as
the voting for the most catastrophic
crasher, longest lag or scariest security
slip is under way. The key for competi-
tion to work well is to keep it exciting
and positive, and make product quality
the real winner.

4. FOOD, FUN, FRIENDS
There’s more to collaboration than the
end result — there’s the camaraderie
that develops throughout the process.
When most testers walk past a lab and
see pizza boxes piled up and people
gathered around a computer trying to
solve a problem, they can’t resist belting
out some suggestions: “Try entering the
umlauts!” “Try a blank filename!” 

Teambuilding is a complex topic to
be studied in graduate management
courses based on thick textbooks filled
with organizational theory…or not.
Sometimes it’s as simple as, “Hey, Ajay,
is this supposed to work with Safari?”
Demonstrate this kind of spontaneity and
set an example for the rest of the gang.

5. PROMOTE YOUR PROJECTS
If the project you’re working on
involves the use of some exciting new

technology or tools, draw attention in
creative ways to stimulate participa-
tion. To promote collaborative testing
on Adobe’s Creative Suite 3, we
designed film noir movie posters —
just seeing the image of the engineer-
ing manager in a fedora was enough
to catch the eye of potential volun-
teers. Less politically astute but per-
haps more memorable was our beard-
ed test lead in a bikini and go-go

boots, part of a promotion for an
InDesign 2.0 project. The QE manag-
er probably burned these images by
now, but they served the purpose at
the time. Fun is underrated, and while
you may wonder how to strike the
right balance, it’s still legal!

6. GET MANAGEMENT BUY-IN
The difference between “What kind of
testing is that?” and “Let’s do that user
experience testing every week!” can be
as simple as a few meetings with the QE
and engineering managers, including
demos and discussion of bugs that have
been found during collaborative testing.

Wrapup e-mails from the event
leader sharing results of the activities
and highlighting the bugs found during
the test event also encourage manage-
ment buy-in for future collaborations.
Here’s an example of an actual entry
from one such e-mail:

Photoshop: Bug 554323 — Gra-
dients applied in and Illustrator PDF drop
out when opening in Photoshop. Status
— Fixed in build 214.

7. SHOW YOUR APPRECIATION
Our Photoshop 5.0 Bug Hunt was a fast-
paced dual-location event (we held it

simultaneously in Seattle and San Jose)
that generated a lot of buzz thanks to
the prizes we offered the winners — no
big bonuses or intercontinental vaca-
tions, but food and gift cards in varying
amounts to add to the excitement and
show our thanks. Developers from
teams throughout our offices came into
the lab and grabbed a slice of pizza and
a list of new product features and
changes so they could try their luck at

finding bugs. It was fun, it
brought people together and it
paid off — literally — for some.

8. TRAIN YOUR 
COLLABORATIVE TEAM
A test center may not look like a
classroom, but in a sense that’s
just what it is. Every tester needs
some basic training specific to the
company’s software and related
products. Testers new to Adobe,
for instance, spend a day getting
to know how the Creative Suite
installer works, how to use the
restore function in Mac OS X, key
Photoshop and Illustrator upgrade
features, even some ActionScript
3.0 and Cascading Style Sheets.

We also provide new collaborators with a
list of contacts on all relevant product
teams — this often proves to be the
most useful training tool of all!

9. SHARE YOUR TIME
AND RESOURCES
When testers offer you their time and
expertise, reciprocate. At the time of the
collaboration, include their ideas and
areas of concern, or set aside a different
time if you can’t test everything at once.
Being a good leader is often touted as
an important tester skill, but being a fan-
tastic follower is just as vital.

What’s more, if a tester asks you to
discuss some test-related ideas over
lunch or coffee, try to make time to go,
listen and be present. Be a person, not
a cog in the machine. Machines all do
their own jobs, never improving for their
proximity to greatness. Even if you’re in
proximity to staggering mediocrity, you
can learn something of value to apply to
a future collaboration. ý

Lanette Creamer (lanette.creamer@gmail.
com) is quality lead for Adobe Systems,
where she coordinates cross-product testing
events for the company’s Creative Suites. She
has 10 years of software industry experience.

[The key for competition 

to work well is to keep it exciting 

and positive, and make product 

quality the real winner.]



30 • Software Test & Performance JANUARY 2010

stopped talking, he took a deep breath
and glared at me. My stomach fell.

Then he launched a full-fledged
attack. “Why is your team just finding
this now?” he demanded. “What have
you people been doing all this time?” His
anger and frustration were palpable. And
he was just getting started. He went on
to accuse me of incompetence
and my team of laziness.

That conversation was years
ago, but just thinking about it still
dredges up feelings of helpless-
ness, defensiveness and bitter-
ness. That day I realized that the
most difficult part of testing isn’t
the actual testing; it’s the politics.
It’s dealing with the fallout when
tests uncover information no one
wants to hear. 

HAVE COURAGE
As uncomfortable as it was to
bring bad news to the VP, it was
my job. As a tester, it’s my obli-
gation to tell the truth, and that’s
what I’m paid to do. Sugar coat-
ing the test results might make
them more palatable to stake-
holders who would rather cling to
the illusion that everything is fine,
or that everything would be fine if
it weren’t for those pesky test results.
But that won’t change reality.

Still, in the face of such intense
emotions, it’s sometimes hard to keep
that in mind. Dealing with these situa-
tions requires a certain amount of intes-
tinal fortitude — you have to stand your
ground and speak the truth even if
you’re afraid your stakeholders would

prefer to shoot the messenger rather
than deal with a disappointing message.
I find comfort in Jerry Weinberg’s say-
ing, “It’s not a crisis; it’s the end of an
illusion.”

Having had many such difficult con-
versations, I’ve developed a strategy for
handling poor reactions to bad news. I

don’t allow myself to get bogged down
in accusations or blame. Instead, I
respond to the essential concerns
behind the anger and frustration, and
seek ways to work with my stakeholders
to address those concerns.

Let’s take an example. Imagine this
VP, fists clenched, face red, launching
into a diatribe at the news I’ve just deliv-

ered. As family therapist Virginia Satir
said, “The problem isn’t the problem;
the coping is the problem.” At this point
my problem isn’t the test results; it’s my
VP’s reaction to the test results.

Sure, I could hook into the implica-
tion that my test team and I have done
nothing for months. I could leap to
defend myself and my team. I could
attempt to shift his anger onto the pro-
grammers and ask how all those bugs
got into the code in the first place.

I could. But I won’t.
Attacking or defending would only

escalate the tension, and would-
n’t make the situation any better.

Instead, I respond by reflect-
ing the essence of the VP’s
underlying concern:

“It sounds like you’re frus-
trated that we’re still finding bugs
and that the schedule is slipping
as a result. I’m frustrated too.
Would you like to talk about what
we’re doing now to address the
situation?”

This response serves two
purposes:
• It acknowledges the VP’s very

real and perfectly valid con-
cerns. It signals that I’m listen-
ing. Just sympathizing is usually
enough to diffuse the worst of
the explosive attacks.

• It provides a chance to shift the
focus of the conversation to a
more productive “what can we
do to move forward.” After all, I
can’t change the past. But
together we can change the
future.

HOLD YOUR GROUND
At this point, the VP has a choice. He
might attack again. If he feels he’s been
barraged by his stakeholders for the
schedule slips, for instance, it would be a

The Politics of Testing:
Making Conflict Count

[The most difficult part 

of testing isn’t the testing; 

it’s the politics. It’s dealing 

with the fallout when tests 

uncover information no one 

wants to hear.]

I
knew that the VP facing me across the table would not want to hear the
news I was bringing him. “There’s a problem,” I began. Immediately his
expression grew stony. I explained what we’d found in testing and why it
was a problem. He listened silently, jaw clenched, face reddening. When I 

By Elisabeth Hendrickson



natural reaction to pass that pain along:
“Yes, I’m frustrated! There’s no rea-

son you should have found these issues
so late! Why weren’t you testing earlier?”

If he attacks again, I’ll continue
reflecting back the valid concerns I hear
him express, and offer to work on those
concerns:

“I understand your frustration that
we’re finding these issues late, and I
agree this is a problem. Would you like
to talk about what it would take to iden-
tify problems earlier?”

Eventually the VP will either agree
to have a productive discussion with
me or he’ll get tired of my approach. If
he gets fed up, he might yell at me, he
might just stop talking and go back to
glaring at me, or he might end the
meeting altogether.

That’s OK. He’s entitled to be
angry, and he’s entitled to express that
anger. But I don’t have to be the target
of his fury. If any of these things hap-
pen, I’ll leave the meeting with a part-
ing invitation:

“I’d like to work with you to make
sure we don’t end up in this situation

again. I can see this is not the best time to
have that discussion, so let’s try again
later. Let me know when is good for you.”

It’s more likely, however, that after a
few rounds of the blame game, the VP
will shift his focus from attacking to try-
ing to solve the problem:

“Fine. Tell me what you think it would
take to find these problems earlier.”

Now I have his full attention, and a
fantastic opportunity to open a conver-
sation about what I think needs to
change to improve our test outcomes.

FOCUS ON THE FUTURE
If I haven’t prepared, that opportunity
will be wasted. So before I even walk
into this meeting, I will have spent
some time investigating the situation
to understand what went wrong and to
form my own opinions about what it
will take to improve things. That way, I
can make concrete observations and
recommendations.

I might say something like:
“At the moment, all our regression

tests have to be executed manually.
That takes days, and it means the feed-

back cycles are too long. I’d like to start
working on getting automated regres-
sion tests in place.”

Or I might say:
“The way the teams work now, we

have a QA group working in isolation. I’d
like to integrate the QA effort better with
the development effort.”

Whatever the root cause and what-
ever solution I plan to recommend, I
show up ready to open the discussion,
talk about what it will take to implement
my suggestion and aim for a positive
outcome to a grim situation.

This approach isn’t easy. It requires
a little courage, a lot of patience and a
stubborn refusal to get caught up in
accusations. But the end result is worth
it. Out of the worst, most uncomfortable
conflicts comes a genuine opening for
productive conversation. ý

Elisabeth Hendrickson (http://www.quality
tree.com/) is the founder and president of
Quality Tree Software, a consulting and
training company dedicated to helping soft-
ware teams deliver working solutions con-
sistently and sustainably. 

P
ho

to
gr

ap
h 

by
 E

nd
os

to
ck



32 • Software Test & Performance JANUARY 2010

be applied to all the main factors testers
consider when defining their approach to
almost every project: people, process and
product (software/technology). 

Of course, while software testers are
professional pessimists, they have an
underlying foundation of optimism —

they're “positive” something will go
wrong! 

So Murphy’s Laws can serve as an
excellent checklist to help focus your
testing. Not only can they guide you to
development of a more thorough testing
approach, but they also offer valuable
insights into achieving better interaction
with team members and stakeholders

throughout the software development
lifecycle.

Here, then, is a list of 10 of Murphy’s
Laws as they apply to software testing:

1. Anything that can go wrong will go
wrong. Clearly, Murphy was thinking
about risk and risk analysis here. This is a

great people and process factor. Bear it in
mind when you think about your system
and your test effort: Identify what might
go wrong in your approach and make pro-
visions to manage the risk. You can also
extend this rule to the defects to look for
in the software/technology aspects of a
system — look for what went wrong pre-
viously. This will indicate where to focus

some of your testing effort.
2. You’ll always find something in the

last place you look. When it comes to
software/technology, this is invariably
true. Defects are usually well hidden, not
obvious, so you'll have to think hard
about where they might be and carefully
structure your testing to find them.
Testers need to know about the systems
they're working with and the processes
the systems are enhancing to make sure
they're being implemented correctly.
Testers also must consider how the end
users are going to use the system and
make sure the actual user scenarios are
tested prior to release, as part of the
process, to make sure these defects are
not found last.

3. Anything you try to fix will take
longer and cost more than you thought.
From a software/technology and process
point of view, no defect is a “quick fix,” no
matter what the developers tell you. Not
only do you have to make sure the defect
has been fixed, but you have to think
about regression — and test for it.

4. If you fool around with a thing long
enough, you’ll screw it up. Testers know
this one by heart — it's our mantra. An
additional consideration is the application
of time to our test effort, to ensure that
the system's nonfunctional attributes are
tested as well as its functionality. This is
definitely a software/technology factor, as
the nonfunctional attributes have to be
designed into the system from the begin-
ning, taking into account the product's
required “uptime” and other quality attrib-
utes. Reliability testing is a key area often
overlooked in the test effort.

5. If there’s a possibility of several
things going wrong, the one that will cause
the most damage will be the one to go
wrong. When it comes to testing, this is a
plus – as long as we find that worst pos-
sible problem before the system goes
live! This is a process factor; we need to
identify these potential defects early in the

The Power of
Pessimism

N
o doubt you've heard of Murphy's Laws, but did you know that Murphy
was a software tester? In “Testing Extreme Programming” (Addison-
Wesley, 2002), Lisa Crispin and Tip House identify Murphy as a tester,
which suggests he was lifecycle-agnostic — indeed, his principles can

By Sharon Robson

P
ho

to
gr

ap
h 

by
 G

eo
rg

e 
M

ar
ti
ne

z



lifecycle and test for them as soon as we
can, using both static and dynamic tech-
niques if possible.

6. When you demonstrate a broken
appliance for the repairperson, it will work
perfectly. As every tester knows, a typi-
cal developer response is, “It
works on my machine.” As part of
the tester’s approach, and a peo-
ple factor, make sure you know
how to reproduce each defect
raised, clearly and concisely, and
be able to articulate the data and
approach used. Also, make sure
the environment and the test were
set up correctly.

7. Build a system even a fool
can use, and only a fool will use it.
An oft-overlooked people factor,
this is all about usability. Know who'll be
using the system you're testing. Make
sure to try all the appropriate business
scenarios when completing your accept-
ance testing. Be sure the system meets
everyone’s expectations. Don’t focus only
on the people who asked for the change
— consider all user levels and classes.

8. There's never time to do it right,
but there’s always time to do it over. This
is so true in terms of testing — there are

always overruns in delivery to the test
team, but there’s always enough time to
redo the work when the delivered build is
incorrect. This is a process factor within
the development lifecycle, so we must
consider how long it takes to resolve any

issues or defects. Remember to include
time for these "do-overs" in your time
estimates.

9. Nature always sides with the hid-
den flaw. No matter how well hidden
defects are during testing, and no matter
what obscure piece of code they're buried
in, users will find them eventually. As part
of the process, make sure when doing a
risk analysis that you consider all risks, no
matter how small or seemingly irrelevant.

From a software/technology point of
view, it's also important for testers to be
knowledgeable about the tools and tech-
niques used to build the system under
test; many a defect can be an unintended
side effect of the project approach. Keep

an eye out!
10. Never argue with a fool;

people might not know the differ-
ence. This is a pure people factor.
Relationships with developers are
extremely important, so don’t
assume the developers of the
product you're testing aren't as
invested in quality as you and the
rest of the test team. Remember
that you too have to be clear and
articulate in conveying your mes-
sage. Focus on listening and

learning as part of your communication
plan. A tester’s credibility is vital to the
information he or she delivers, so make
sure you have a solid understanding of the
system you're testing, and don't risk cast-
ing yourself in the role of the “fool.” ý

[Many a defect can be an 

unintended side effect of the 

project approach.]

Sharon Robson (SharonR@softed.com),
BSC Hons, Grad Dip IT, CTAL-AT, CTAL-TM,
is a trainer and consultant specializing in
software testing for Software Education. 

Like most females, I was born with
“women’s intuition.” I use this intuition as
one of my own personal testing tools, not
only during test execution, but also when
dealing with my project team and stake-
holders, planning testing activities and
adapting test plans and approaches as
projects change. It doesn't replace "sci-

entific" tools like requirements-based test-
ing and other techniques and metrics, but
it's a reliable addition.

As a tester, I need to determine if the
part of the application I'm evaluating feels
solid. I rely on my intuition to tell me, “Yup,
this piece looks good. I believe I've test-
ed this area sufficiently to be comfortable

with it and I'm ready to move on to the
next part of the test.” 

Does this feeling correlate to the
number of test cases I’ve run? Maybe, but
I usually do exploratory testing, and my
exploratory test measures aren’t always
easy to capture, at least not in tradition-
al test case reporting form — number of
tests planned, number of tests passed
and so on. Does this feeling correlate to
the number of defects I've found? Maybe,
but many times I've felt uncomfortable with
an area under test; I haven't found sig-
nificant defects to support the feeling. I

Putting Intuition to
the Test

Intuition: "The act or faculty of knowing or sensing without the use of
rational processes; a perceptive insight; a sense of something not evident
or deducible; an impression."

By Nancy Kelln

—www.thefreedictionary.com



34 • Software Test & Performance JANUARY 2010

just knew my gut was telling me some-
thing wasn’t right. 

We use our intuition every day when
crossing a busy street at an uncontrolled
intersection. When there is traffic coming
we judge how fast a car is moving and
weigh that against how long it will take us
to cross the street. We don’t rely on met-
rics to tell us the exact speed the car is
traveling in miles per hour or how long it
will take us to cross in seconds or min-
utes. Instead, we take our best guess at
these facts and go with our gut, even in
potentially life-threatening situ-
ations. As a tester, I don’t
always have all the facts about
the application under test, so
I've learned to trust my hunch-
es in all aspects of my work. I
believe that intuition is a unique
tool all testers — not just
women — should be encour-
aged to use and, indeed, cele-
brate. By leveraging their intu-
ition when they perform the var-
ious aspects of their jobs on
software development teams,
testers gain new insight into the
testing, allowing them to test
the product in ways that pre-
planned, scripted testing might
not have addressed. 

INTUITION AT WORK
As testers, we work with devel-
opers, project managers, busi-
ness users and a variety of oth-
er stakeholders. Building and
maintaining these professional
relationships can be complex.
I find that testers who use their
intuition in these relationships
are more successful in devel-
oping strong relationships with
the people on their teams.

This comes in particular-
ly handy because testers are
often the bearers of bad news. We tell
developers about problems in their code.
We alert project managers to issues that
could impact their timelines. We inform
business stakeholders about missed
requirements or ways in which the sys-
tem acts differently from expected.
Because no one likes to hear bad news,
understanding how people will react and
gauging when to communicate is an
important skill for testers. Being an
astute observer of mood and body lan-
guage helps me decide when and how
to deliver my message so it comes

across clearly and conveys the appro-
priate level of impact. 

Another area in which intuition pays
off is in determining test plans. I still gath-
er all the information required of a risk-
based approach, but I let the information
I’ve gathered through discussion with my
team lead to a gut feeling that helps guide
my test approach and determine the
extent to which I test each area of the
application.  

My intuition probably plays its most
critical role during test execution, espe-

cially during exploratory testing. With most
applications, there's no way to manually
test every scenario or condition.
Therefore, we need some method to
determine when we've completed enough
testing to feel confident in the area under
test. Many tools and processes have been
developed to try to prove appropriate cov-
erage has been performed — require-
ments-based testing is a good example.
However, I've seen many testers use the
art of their intuition along with the science
of testing metrics to successfully gauge
when they've tested enough and have

achieved adequate coverage.
Finally, I use my intuition to adapt my

test plan to the always changing demands
of software testing. One reality of soft-
ware development is that often we don’t
have all the facts, especially in the early
stages of planning. As we move along our
project timeline, we uncover new infor-
mation and must adapt accordingly. For
instance, I may begin to feel more or less
confident about areas I've already test-
ed or areas I still plan to test based on
facts that emerge and my instincts about

them. When this happens, I
adjust my plan accordingly. 

CONTEXT COUNTS
Although intuition can be a
strong tool, it must be adapt-
ed and applied in context. For
example, I've found that intu-
ition doesn’t scale well to
larger projects. Depending on
the size and scope of the
project in which I’m engaged,
I may not have extensive
awareness of the project
goals, objectives, timelines
and risks. I still leverage my
intuition, but I remain sensi-
tive to the importance of
seeking out additional infor-
mation before letting my gut
feelings guide me. In these
cases, my intuition tells me
to base my decisions more
on facts and less on intuition. 

Because I've found my
intuition such a valuable tool in
my testing, I encourage other
testers to rely on their intuition
as well. And, by the way, I
meant what I said earlier —
women aren't the only ones
who possess intuition. I've met
some pretty intuitive male
testers, too. 

The bottom line: Not all software
testers, regardless of gender, use their
intuition, but we need to learn to trust
our instincts when it comes to testing.
We have to go with that gut feeling about
what, when and how to test. And we
have to report not only the metrics but
the feelings about our test findings. Only
then will we provide the complete pic-
ture of product quality. ý

Nancy Kelln (nancy.kelln@shaw.ca) is an
independent consultant with 12 years of
diverse experience within the IT industry. 

Ill
us

tr
at

io
n 

by
 F

ra
nk

 B
os

to
n



serves as a good example. In the running
up to becoming a mother I knew my life —
both personal and professional — was
about to change. But it wasn’t until I actu-
ally had my first child that I realized just
how different things would be. I sudden-
ly found myself more restricted career-
wise than I’d anticipated because of the
personal choices I’d made.

So my next decision was to do what-
ever I could, using the tools and capabil-
ities available. This meant connecting with
other testing professionals online more
often than face to face and establishing
myself as a freelance testing consultant.  

Toward that end, one of my first steps
was to set some goals for myself: get my
name known and find local, flexible or
remote testing work, preferably involving
Web applications and accessibility, my pri-
mary areas of interest. From that point on,
I geared everything I wrote and commu-
nicated, online and off, toward meeting
these goals. 

I found that this approach suited me,
and my clients and family, all quite well. In
fact, I discovered that the social Web is
ideal for achieving visibility, and building a
brand and a business, across the globe.
It also allows you the flexibility to adapt
as customer and personal needs evolve.

With that in mind, here's a look at some
tools to help build your personal brand.

BLOGGING BENEFITS
First, let's get this straight: Blogging is not
for everyone. Every successful blog is
unique, with content that reflects the writer's
personal or professional goals. For me, it's
about reaching out to others, sharing knowl-
edge, being helpful and interesting. 

But there's good reason there are

relatively few software testing blogs out
there. Being interesting and helpful isn't
always easy, and finding the time to keep
it up is hard. Ideas can dry up quickly.
It’s easy to develop writer's block. And
an empty or boring blog won’t do you
any favors.

However, there are clear benefits:
Writing regularly sharpens your commu-
nication skills. It provides a point of inspi-
ration and feedback for developing ideas
in cooperation with other testers, local
and worldwide. It allows
you to develop conversa-
tion, community, even
friendly controversy, one
on one or in groups, letting
you and your potential
clients develop a pressure-
free rapport. And it's a ter-
rific confidence booster. 

My top tips for blog-
ging are:

• Get a domain and
stick with it for the
long term — it’s
great for branding
and search engine
optimization. 

• Keep your entries
original, useful and
intriguing.

• Let your passion and
character emerge in
your writing and your
design.

• Be professional and
respectful at all times; search engines
are like elephants — they never 
forget.

• Include a short, readily accessible
description of yourself.

• Make your site easy to navigate,
and make it simple for people to
contact you.

• Participate in other blogs and
online conversations — don't be
afraid to reach out to other tech
professionals (most of them don’t
bite!).

When do you know your blog is
becoming a success? Simple measure-
ments include increases in traffic, quanti-
ty and content of visitor feedback and, in
some cases, a great job lead or a rise in
the number of inquiries you get for test-
ing-related consulting assignments or
speaking engagements.

TWEETING FOR TESTERS
The booming microblogging
service Twitter is ideal for
those who've never gotten
around to blogging but want
to be their natural social
selves online.

I've found that the prin-
ciples of blogging general-
ly apply to "tweeting," too,
but Twitter tends to focus
more on the social than the
professional. To build your
business using Twitter, the
best bet is to dive in and
participate. Start by search-
ing for other testers in online
Twitter directories, find out
whom others in the testing
industry follow, and check
out Twitter lists others have
created (you can find my list
of testers at http://twitter
.com/rosiesherry/software
testing). 

On Twitter, you can
view updates from everyone you follow in
one stream. So, for instance, you can fol-
low numerous people in the world of soft-
ware testing, getting a single stream of
tweets about testing when you want them,

Use the Social Web to
Build Your Career Brand

There seems to be no way to get away from the idea of the social Web.
Twitter this. Facebook that. LinkedIn here. YouTube there. Everyone's
talking about it, but how can we use it to build a personal brand and
benefit the wider software testing community? My own experience

By Rosie Sherry

[Blogging is 

not for everyone. 

But there are 

clear benefits.

It provides 

a point of 

inspiration and

feedback.]



and jumping into relevant conversations
at your convenience.

My top tips for using Twitter:
• Find interesting people to "follow."
• Participate often in conversations.
• Be yourself — transparency and

honesty are crucial at all times.
• Make it easy for others to get to

know you — post a short bio, and
link to your Web site, blog or
LinkedIn page.

• Help other testers and ask them
for help as well.

By the way, if tweeting doesn't seem
like your thing, you can still get some of
the juice just by seeing what others are

tweeting about. Start by checking Twitter
search (http://search.twitter.com) for test-
ing terms or follow custom Twitter lists (as
mentioned above) for tips. Much of the
content you'll find on Twitter can't be found
through the more traditional search engines,
so you may be pleasantly surprised.

JOIN ONLINE COMMUNITIES
There are many places online to partici-
pate too. Online communities include the
likes of STP Collaborative (home base of
this magazine) and the Software Testing
Club (my "baby"), as well as LinkedIn and
Yahoo groups. They all vary in their offer-
ings — some serve primarily as discus-
sion centers while others are mainly infor-
mation resources — but they all have
impressive members among their ranks,
and you can sign on with minimal if any
commitment, participating to share knowl-
edge and gain exposure among peers at
pretty much any time.

My top tips for participating in online
communities:

• Be helpful and respectable.
• Promote yourself "naturally" —

keep in mind that online commu-
nities aren't a place to blatantly ped-
dle your skills.

• Maintain a consistent profile among
all your online spaces (your blog,
LinkedIn, Twitter and Yahoo pages,
for example).

• Try to get to know some of the com-
munity members personally, as long
as there's a valid reason (don't send
en e-mail just to say hello).

It's easy to get carried away and

waste valuable time (yours and others')
because of the sheer number and size
of online forums and communities.
Choose a handful where you can focus
your participation. They don't even have
to be specific to software testing — I'm
a big fan of crossing over into other
niche communities (e.g., agile, accessi-
bility, Web development). In fact, it would
be great if more testers participated in
communities devoted to other technol-
ogy areas, to learn from our peers in
related fields, widen our reach and
spread the word that we really do exist!

GET FACE TIME
Online interaction is fantastic, but it's not
a substitute for face-to-face interaction. 

Many software testing events take
place across the globe every year. Some
are more formal, costly and time-con-
suming; others are informal, local mee-
tups, often spurred by the growth of the

social Web. Use the Web to set the stage,
but attend as many of these meetings
as you feel you can afford, both time- and
moneywise. I've had some 10-minute "real-
life" conversations with other testers that
have proven valuable far beyond any
amount of Web-based discussion.

My top tips for live events:
• Tear yourself away from the com-

puter and go to them!
• You don't need to meet everyone,

but try to be social.
• Put faces to names and introduce

yourself to those who read your
blog or follow you on Twitter, and
whose postings you read as well.

• Attend other tech-related events,
not just testing-focused gatherings

• Bring a business card or other
handout that includes your contact
details (my favorites are Moo cards,
www.moo.com, but the choices are
virtually endless).

• No local meetings? Start your own!

BE DIRECT
Testing consultant James Bach posted
a blog entry in June called "Have Internet,
Will Test" (www.satisfice.com/blog
/archives/322) that raised an interesting
point: Too often people are shy or scared
of coming across online as overly self-
promotional. They expect that just
because they’re online or have written an
article, the offers will come flying in. But
it doesn’t work that way.

It’s important to let people know what
you want (or don't want). How can they help
you if they don't know what you're looking
for? It may be a work-related opportunity.
Or perhaps you have a great idea for an arti-
cle. Or you have some time to volunteer
your worthy skills. The strong online pres-
ence you've developed will increase your
chances of getting what you need — if you
ask. Humans tend to be helpful, but they
need to feel confident that they're sup-
porting the right person for the job.

In effect, this means all the work
you've put into building your personal
brand and developing your professional
reputation will help others decide if they're
comfortable recommending you. Make
that decision a no-brainer for them. ý

36 • Software Test & Performance JANUARY 2010

Rosie Sherry (rosie@schux.com) is a U.K.-
based software tester turned social media
professional. Starting as a tester primarily
for Web-based projects, she now supports the
testing industry through the Software Testing
Club (www.softwaretestingclub.com).

P
ho

to
gr

ap
h 

by
 P

ho
to

sa
ni



PARIMALA SHANKARAIAH is a senior
tester at Consona in Bangalore. We took
some time to ask for her perspective on
working as a tester in India today.

STP: There are many great women

testers in India; whom do you consid-

er some of the most notable?

PARIMALA SHANKARAIAH: India is
home to women like Dr. Meeta Prakash,
Minal Deshpande, Anuradha Biswas and
Rashma Samani, all of whom shine in the
testing business. While Meeta defended a
thesis in testability to win her PhD in soft-
ware testing (the first Indian to achieve it),
Minal Deshpande picked testing as her
area of interest early in her career and is
now head of testing services at Deloitte.
Anuradha Biswas rose from being a quali-
ty assurance and testing associate to
head of testing services at Infosys.
Rashma Samani manages one of the
largest groups of testers at NDS and is
considered a very successful test manag-
er. Likely many women I don’t know about
would be eligible for this list.

These are examples of Indian women
testers who had great potential and cut
through all barriers to establish their cred-
ibility. Outside the testing context, we
have women like Padmasree Warrior,
CTO of Cisco, who proved to the world
that Indian women in the technology
space are as competent as the men and
women of any other country. All have
inspired both men and women in the IT
and testing fields. But why so few names?
Shouldn’t I have a huge list? 

What are some of the challenges fac-

ing women testers in particular?

India was one of the first few developing
countries to rid itself of the dogma that
women should not go out to work. So
that isn’t our challenge. 

Today, many Indian women are self-
dependent with skills and work outside
the home. Their contribution to the coun-

try’s growth has been very significant.
Unfortunately, that doesn’t mean they

have escaped all problems. Women still
have additional responsibility compared
with men, taking care of their homes as
well as managing office work. Most men in
India enjoy this luxury, so their focus on
work can be 100 percent, whereas women
have a 50-50 split. Often, they manage to
be as productive as men. But when they
can’t take time to interact with the testing
community, it limits visibility of how good
they are at testing. 

What’s your advice to women trying

to do it all?

Women testers in India need to balance
work at home and office. It’s challenging
to find time to interact with other testers,
read testing books and articles, practice
testing, blog about testing experiences….
Yet it’s encouraging to see many women
getting actively involved in these activities. 

Patrilineal family structure is the basic
unit of society in India. If any woman in the
family chooses to work instead of being a
housewife, the entire family decides
whether to let the woman work or not.
Fortunately, this is changing for the good.
Many families today are more open to
women going to work and helping women
balance work and life. This increasing sup-
port makes women testers all the more
enthusiastic to explore. The traditional
pattern of women running around both
home and office is changing. This is very
encouraging for many women testers.

Do you see things progressing for

women testers in India?

Yes, a lot! Indian women testers are slow-
ly getting better at finding the perfect
work-life balance. They have taken a giant
leap from being average testers with 9 to
5 jobs to people with ambitious and
accomplished careers in software testing.

A growing number are coming out in
the open and talking about their experi-

ences and learning with the outside world
through blogs, in online forums, by attend-
ing and speaking at testing conferences
and universities, and so on.  Thanks to
specialization, women testers are a lot
more capable today in their testing skills,
technical/scripting skills, and communica-
tion and other soft skills. 

What forums are available to facili-

tate communication?

Many informal testing associations
involving women testers have started in
local communities to discuss testing
challenges and how to overcome them.
Such groups also reach out to and train
women testers who are finding problems
in learning new technologies and script-
ing languages or testing different types
of products. These can be ideal groups
for women mentoring women, where
group learning is encouraged. 

Weekend Testers (http://week-
endtesting.com/) is one such peer testing
group initiative. So far, more than 25
women testers have tested open source
projects and learned to be better
exploratory testers through Weekend
Testers. Based on my experiences in
Weekend Testers, I’m thinking of starting
an all-women testers peer group that will
discuss and address women-centric
issues in testing. 

Women testers are taking testing
careers much more seriously than in the
past. Using social media, women testers
are getting connected with testers in dif-
ferent parts of the world to learn and
share knowledge as part of a single glob-
al testing community. Through this, we
see the passion and enthusiasm these
women have exercised in passing through
all the challenges and achieving success.

A few years from now, I hope to have
another conversation with you about
Indian women testers, and I hope the list
of globally recognized testers has grown
substantially by that time. ý

Interview
India’s Women Testers Gain Visibility:
A Conversation With Consona’s 
Parimala Shankaraiah



38 • Software Test & Performance JANUARY 2010

THE GUIDE

IF YOU OR YOUR WOMEN CO-
workers, managers or staff want to share
industry- and career-related knowledge
and advance the role of women in soft-
ware testing and technology, consider
connecting with the following professional
organizations:

The National Center for Women & Infor-
mation Technology (www.ncwit.org) is a
national coalition of nearly 200 prominent
corporations, academic institutions, gov-
ernment agencies and nonprofits working
to strengthen the IT workforce and
encourage technology innovation by
increasing the participation of women.
NCWIT’s work connects programs along
the entire pipeline, from K-12 and higher
education through industry, academic and
entrepreneurial careers. 

“The population that creates our
technology should be as broad and
diverse as the population it serves.
Diversity in technology occupations
brings different problem-solv-
ing approaches, fresh ideas
and greater opportunities for
innovation. As technology
becomes increasingly perva-
sive in our lives, it’s critical
that we increase the participa-
tion of women in the technol-
ogy workforce.”
– Lucy Sanders, 
Cofounder and CEO, NCWIT;
Bell Labs Fellow

The Women Technology Council (http://
www.womentechcouncil.org/) is a not-for-
profit organization providing leadership,
support, mentorship, networking and a
sense of community for women in all lev-
els of the technology industry, including
those from technology companies and
those with technology roles in other
organizations. 

“Women are very important to the
software industry. They bring a unique

blend of organizational and communica-
tion skills paired with tenacity and analyti-
cal intelligence. So many areas of soft-
ware design, development and testing
have been improved with the help of many
smart women. Our organization strives to
be a resource that offers mentoring and
guidance for women in technology. We
remain dedicated to inspiring interest and
recognizing accomplishments for women
in technology careers.” 
-- Kimberley A. Jones, 

Chair of the Board, WTC

Women in Technology Inter-
national (www.witi.com) was
founded by Carolyn Leighton
to help women advance by
providing access to, and sup-
port from, other professional
women working in all sectors
of technology. WITI started in
1989 as the International Net-
work of Women in Tech-

nology, and in
2001 evolved into the WITI
Professional Association, the
nation’s leading trade associa-
tion for tech-savvy women;
today, WITI is the premiere
global organization empower-
ing women in business and
technology to achieve trans-
formation through technology,
leadership and economic
prosperity. With a global net-
work of smart, talented

women and a market reach exceeding 2
million, WITI has powerful programs and
partnerships that provide connections,
resources, opportunities and a supportive
environment of women committed to
helping each other. Along with its profes-
sional association of networks throughout
the U.S. and worldwide, including Hong
Kong, Great Britain, Australia and Mexico,
WITI delivers value for individuals who
work for companies, the government or

academia, as well as small business own-
ers. WITI products and services include:
Networking, WITI Marketplace, Career
Services/Search, National Conferences
and Regional Events, Publications and
Resources, Small Business Programs,
Research, Bulletin Boards and more.   

The Association for Women in Computing
(http://awc-hq.org/) was founded in
Washington, D.C., in 1978 and is one of
the first professional organizations for

women in computing. AWC
is dedicated to promoting
the advancement of women
in the computing profes-
sions. Members include
many types of computer pro-
fessionals, such as program-
mers, system analysts,
operators, technical writers,
Internet specialists, trainers
and consultants. The pur-
pose of AWC is to provide
opportunities for profession-

al growth through networking and pro-
grams on technical and career-oriented
topics. AWC encourages high standards
of competence and promotes a profes-
sional attitude among its members. A
board of directors represents all the local
chapters. AWC supports and encour-
ages networking, both in person and via
the Internet. It encourages the formation
of student chapters at colleges and uni-
versities. AWC is a constituent society
member of the Institute for Certification
of Computer Professionals (ICCP).

The Association for Women in Technology
(http://www.awtsocal.org) is a nonprofit
organization dedicated to empowering
women in all fields of technology. AWT
facilitates networking and career develop-
ment through informal and professional
events. AWT also supports a charitable
foundation to provide scholarships for
women in Southern California.ý

A Wealth of Resources 
For Women Testers
c

CAROLYN LEIGHTON

LUCY SANDERS






